National Academies Press: OpenBook

Nutrient Adequacy: Assessment Using Food Consumption Surveys (1986)

Chapter: Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women

« Previous: Appendix A: Adjustment of Intake Distributions Used in This Report
Suggested Citation:"Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women." National Research Council. 1986. Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: The National Academies Press. doi: 10.17226/618.
×
Page 115
Suggested Citation:"Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women." National Research Council. 1986. Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: The National Academies Press. doi: 10.17226/618.
×
Page 116
Suggested Citation:"Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women." National Research Council. 1986. Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: The National Academies Press. doi: 10.17226/618.
×
Page 117
Suggested Citation:"Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women." National Research Council. 1986. Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: The National Academies Press. doi: 10.17226/618.
×
Page 118
Suggested Citation:"Appendix B: Derivation of Criteria for Interpretating Iron Intake in Women." National Research Council. 1986. Nutrient Adequacy: Assessment Using Food Consumption Surveys. Washington, DC: The National Academies Press. doi: 10.17226/618.
×
Page 119

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

APPENDIX B Derivation of Criteria for Interpreting Iron Intake in Women As discussed in Chapter 5, when nutrient require- ments are symmetrically distributed around the mean, the probability assessment approach is relatively insensi- tive to the shape of the requirement distribution. This is not true when the distribution is markedly asymmet- rical, as for iron requirements of menstruating women. For this reason, it is important to estimate the charac- teristics of the distribution of iron requirements for this group. In agreement with the FAD/WHO Expert Group (FAD/WHO, 1970), the iron losses are divided into two components: basal losses via the skin, urine, and feces (excreted iron rather than unabsorbed iron) and the losses in the menses. The need for absorbed iron to balance these losses is then estimated using the upper limit of absorption of dietary iron that can be expected in persons ingesting a mixed diet, who are in need of iron, but maintaining body iron stores. The development of these components of the final estimate is described below. An isotopic technique has been used to measure basal iron losses for adult men under various conditions (Green et al., 1968). For the purpose of this appendix, the data obtained with this technique have been extrapo- lated to women on the basis of relative metabolic size, as reflected by basal metabolic rate (BAR). The mean basal iron loss derived in this manner is approximately 0.67 mg/day. mere are few data on the variability of these losses, other than those in the original studies of men. A coefficient of variation (CV) of approxi- mately 15% used for this exercise results in a range 115

116 from about 0.47 to 0.87 mg/day. For simplicity' a basal loss of 0.87 mg/day was accepted for all wa~en--a small overestimation of actual need. Iron content of the menses is the major factor affect- ing the distribution of iron needs among menstruating women. Several studies have established that there is considerable variation among women but a similarity from cycle to cycle for individual women. Thus, losses for a population of women should be fairly similar to the distribution of iron requirements used in the probability approach. Suitable data on iron losses have been provided in the reports of two large population studies (Cole et al., 1971; Hallberg et al., 1966), which are supported by the findings from a number of smaller studies (see Beaton, 1974). A simple examination of the distribution of observed iron losses would lead to an underestimate of both loss and requirements of women replete with iron because women with high blood losses tend to have low hemoglobin levels (i.e., a tendency toward anemia). To circumvent this, the distribution of blood losses was con- verted to iron losses by using a standard hemoglobin concen- tration rather than the hemoglobin level of the study sub- ject. The resultant distributions for the two studies were then merged and found to be in good agreement. A log-normal distribution model that fit the data reasonably well (Beaton, 1974) was used for modeling. Expressed in terms of natural logarithms, the menstrual iron loss distribution may be de- scribed as having a mean of -0.81 and a standard deviation of 0.84. Iron absorption is a regulated process, and within the limits of bioavailability of dietary iron, the body will absorb sufficient iron to meet one's needs and will reject (i.e., absorb with lower efficiency) iron above these needs. Since the objective is to estimate the lowest intake of dietary iron that will maintain iron balance in relation to known losses, there is a need to estimate the upper limit of iron absorption. As iron depletion increases, the effi- ciency of iron absorption also increases. After reviewing various kinds of information, the FAG/ WHO (1970) committee suggested that the upper limit of absorption was approximately 20% among subjects consuming diets relatively rich in meat and other animal proteins. Since the nature of different diets affects iron bioavaila- bility (Monsen et al., 1978), the upper limit suggested by the FAD/WHO committee was much lower for subjects consuming

117 predominantly cereal diets. The 20% upper limit absorption figure is appreciably higher than the commonly quoted aver- age iron absorption of adult men. Nonetheless, it hen been used in the models presented in this report. To examine the effect of defining the requirement in terms of some iron-depleted state (e.g., mild anemia), one need only alter the estimate of the upper limit of iron absorption by increasing it. To apply this model in the assessment of intake, the following algorithms were adopted: Available iron = 0I x UL, where 0I = observed intake (mean intake for the frequency interval) and UL = upper limit of absorption, i.e., 20% for the iron replete state. Iron available to meet menstrual loss = (OI x UL) - 0.87, where 0.87 mg/day is the assumed basal loss of iron (see comments above), and the position in the normal dis- tribution (Z score) is calculated as: Z = Ln [(OI x UL) - 0.87] - (-0.81), 0.84 where -0.81 is the mean of the distribution of logarithms of menstrual iron losses, 0.84 is the standard deviation of that distribution, and the probability that the observed intake would be inadequate to meet iron losses is computed by an algorithm describing the cumulative area under the normal distribution curve to the right of Z. This phase of the calculation is identical with that used for nonloga- rithmic distribution models. Beaton (1974) attempted to validate this model by com- paring predicted prevalences of inadequate intake with pre- dicted response to iron administration. He based the latter on the probability of response associated with observed hematocrit, using data from a population study by Garby et _. (1969a,b). There was reasonable agreement when hema- tologic data from Nutrition Canada and from the Ten-State Nutrition Survey were examined by a probability approach and then compared with assessments based on dietary data from 1-week studies. The model described above has been used to estimate dietary iron requirements in the recent revision of Recommended Nutrient Intakes for Canadians, which contains further discussion on this topic (Health and Welfare, Canada, 1983). With this model, the current Canadian recommended

118 intake of iron (14 mg/day) would be adequate to meet the needs of all but approximately 5% of menstruating women, whereas the U.S. recommended intake (18 mg/day) would meet the predicted needs of all but about 2% to 3% of women. REFERENCES Beaton, G. H. 1974. Epidemiology of iron deficiency. Pp. 477-528 in A. Jacobs and M. Worwood, eds. Iron in Biochemistry and Medicine. Academic Press, New York. Cole, S. R., W. Z. Billewicz, and A. M. Thomson. 1971. Sources of variation in menstrual blood loss. J. Obstet. Gynaecol. Br. Commonw. 78:933-939. FAD/WHO (Food and Agriculture Organization/World Health Organization). 1970. Requirements of Ascorbic Acid, Vitamin D, Vitamin B12, Folate, and Iron. Report of a Joint FAD/WHO Expert Group. WHO Technical Report Series No. 452. FAO Nutrition Meetings Report Series No. 47. World Health Organization, Geneva. Garby, L., L. Irnell, and I. Werner. 1969a. Iron defi- ciency in women of fertile age in a Swedish community. II. Efficiency of several laboratory tests to predict the response to iron supplementation. Acta Med. Scand. 185:107-111. Garby, L., L. Irnell, and I. Werner. 1969b. Iron de~i- ciency in women of fertile age in a Swedish community. III. Estimation of prevalence based on response to iron supplementation. Acta Med. Scand. 185:113-117. Green, R., R. Charlton, H. Seftel, T. Bothwell, F. Mayet, B. Adams, C. Finch, and M. Layrisse. 1968. Body iron excretion in man: A collaborative study. Am. J. Med. 45:336-353. Hallberg, L., A.-M. Hogdahl, L. Nilsson, and G. Rybo. 1966. Menstrual blood loss--a population study: Variation at different ages and attempts to define normality. Acta Obstet. Gynaecol. Scand. 45:320-351.

119 Health and Welfare, Canada. 1983. Recommended Nutrient Intakes for Canadians. Compiled by the Committee for the Revision of the Dietary Standard for Canada. Bureau of Nutritional Sciences, Food Directorate, Health Pro- tection Branch, Department of National Health and Welfare. Canadian Government Publishing Centre, Ottawa. Monsen, E. R., L. Hallberg, M. Layrisse, D. M. Hegsted, J. D. Cook, W. Hertz, and C. A. Finch. 1978. Esti- mation of available dietary iron. Am. J. Clin. Nutr. 31:134-141.

Next: Appendix C: Method for Estimating Confidence Intervals »
Nutrient Adequacy: Assessment Using Food Consumption Surveys Get This Book
×
 Nutrient Adequacy: Assessment Using Food Consumption Surveys
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Just how accurately can adequate nutrient intake be measured? Do food consumption surveys really reflect the national diet? This book includes a brief history of dietary surveys, and an analysis of the basis of dietary evaluation and its relationship to recommended dietary allowances. A discussion of how usual dietary intake may be estimated from survey data, a recommended approach to dietary analysis, and an application of the analysis method is presented. Further, an examination of the impact of technical errors, the results of confidence interval calculations, and a summary of the subcommittee's recommendations conclude the volume.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!