National Academies Press: OpenBook

The Earth's Electrical Environment (1986)

Chapter: References

« Previous: SUMMARY AND CONCLUSIONS
Suggested Citation:"References." National Research Council. 1986. The Earth's Electrical Environment. Washington, DC: The National Academies Press. doi: 10.17226/898.
×
Page 111
Suggested Citation:"References." National Research Council. 1986. The Earth's Electrical Environment. Washington, DC: The National Academies Press. doi: 10.17226/898.
×
Page 112
Suggested Citation:"References." National Research Council. 1986. The Earth's Electrical Environment. Washington, DC: The National Academies Press. doi: 10.17226/898.
×
Page 113

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

THE ELECTRICAL STRUCTURE OF THUNDERSTORMS 111 storms. In some instances a brute-force approach would also be helpful, for example, in obtaining successive or simultaneous balloon soundings of the electric-field profile in a storm. Still other observational needs provide challenging problems for development—for example, measurement of the net charge density in storms or of the charge carried by small cloud particles. Even after comprehensive observations have been obtained on storms, it is entirely possible that the specific mechanism or mechanisms that caused their electrification will continue to elude precise definition. In the case of a precipitation mechanism, it would be extremely difficult to catch particular charging events ''in the act." This would need to be done in the controlled environment of the laboratory, simulating cloud conditions as closely as possible. Specific areas of interest in present and future laboratory studies are (1) contact electrification processes at ice surfaces and (2) corona discharges from precipitation. Computational models, both simple and complex, will continue to be useful in interpreting field and laboratory observations and in predicting the ability of particular mechanisms to electrify a storm. Such modeling will rely heavily on parameterizations of observational data, however, since the electrification results from a cascade of physical processes each of which are inherently difficult to simulate in their own right. In conclusion we note that, although the problems of thunderstorm electrification are difficult and complex, their solution is becoming possible and is a prized goal of scientists. ACKNOWLEDGMENTS The comments and reviews by William Winn, Earle Williams, Don MacGorman, Charles Moore, and Marx Brook significantly improved this review. The author is also indebted to numerous other colleagues for their insights and discussions. References Balachandran, N. K. (1983). Acoustic and electric signals from lightning, J. Geophys. Res. 88 , 3879-3884 . Bohannon, J. L., A. A. Few, and A. J. Dessler (1977). Detection of infrasonic pulses from thunder, Geophys. Res. Lett. 4 , 49-52 . Bringi, V. N., T. A. Seliga, and K. Aydin (1984). Hail detection with a differential reflectivity radar, Science 225 , 1145-1147 . Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti (1982). The electrical structure of the Hokuriku winter thunderstorms, J. Geophys. Res. 87 , 1207-1215 . Byrne, G. J., A. A. Few, and M. E. Weber (1983). Altitude, thickness and charge concentration of charged regions of four thunderstorms during TRIP 1981 based upon in situ balloon electric field measurements, Geophys. Res. Lett. 10 , 39-42 . Chalmers, J. A. (1967). Atmospheric Electricity , 2nd ed., Pergamon, Oxford. Chauzy, S., P. Raizonville, D. Hauser, and F. Roux (1980). Electrical and dynamical description of a frontal storm deduced from LANDES 79 experiment, Proceedings 8th International Conference on Cloud Physics , American Meteorological Society, Boston, Mass., pp. 477-480 . Chiu, C. S. ( 1978 ). Numerical study of cloud electrification in an axisymmetric, time-dependent cloud model , J. Geophys. Res. 83 , 5025-5049 . Christian, H. , C. R. Holmes , J. W. Bullock , W. Gaskell , A. J. Illingworth , and J. Latham ( 1980 ). Airborne and ground-based studies of thunderstorms in the vicinity of Langmuir Laboratory , Q. J. R. Meteorol. Soc. 106 , 159-174 . Cobb, W. E. (1975). Electric fields in Florida cumuli, EOS 56 , 990 . Crabb, J. A., and J. Latham (1974). Corona from colliding drops as a possible mechanism for the triggering of lightning, Q. J. R. Meteorol. Soc. 100 , 191-202 . Dawson, G. A. (1969). Pressure dependence of water-drop corona onset and its atmospheric importance, J. Geophys. Res. 74 , 6859-6868 . Dye, J. E., J. P. Winn, C. B. Moore, and J. J. Jones (1985). The relationship between precipitation and electrical development in New Mexico thunderstorms, EOS 66 , 840 . Dye, J. E., J. J. Jones, W. P. Winn, T. A. Cerni, B. Gardiner, D. Lamb , R. L. Pitter, J. Hallett, and C. P. R. Saunders (1986). Early electrification and precipitation development in a small, isolated Montana cumulonimbus, J. Geophys. Res. 91 , 1231-1247 . Few, A. A. (1985). The production of lightning-associated infrasonic sources in thunderclouds, J. Geophys. Res. 90 , 6175-6180 . Fuquay, D. M. (1982). Positive cloud-to-ground lightning in summer thunderstorms, J. Geophys. Res. 87 , 7131-7140 . Gardiner, B., D. Lamb, R. Pitter, and J. Hallett (1984). Measurements of initial electric field and ice particle charges in Montana summer thunderstorms, J. Geophys. Res. 90 , 6079-6086 . Gaskell, W. (1981). A laboratory study of the inductive theory of thunderstorm electrification, Q. J. R. Meteorol. Soc. 107 , 955-966 . Gaskell, W., and A. J. Illingworth (1980). Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification, Q. J. R. Meteorol. Soc. 106 , 841-854 . Gaskell, W., A. J. Illingworth, J. Latham, and C. B. Moore (1978). Airborne studies of electric fields and the charge and size of precipitation elements in thunderstorms, Q. J. R. Meteorol. Soc. 104 , 447-460 . Gish, O. H., and G. R. Wait (1950). Thunderstorms and the Earth's general electrification, J. Geophys. Res. 55 , 473-484 . Goyer, G. G. et al. (1960). Effects of electric fields on water-drop coalesence, J. Meteorol. 17 , 442-445 . Griffiths, R. F. (1976). Corona charging of frozen precipitation, J. Atmos. Sci. 33 , 1602-1606 . Griffiths, R. F., and J. Latham (1972). The emission of corona from falling drops, J. Meteorol. Soc. Jpn. 5 , 416-422 . Griffiths, R. F., and C. T. Phelps (1976). A model for lightning initiation arising from positive streamer development, J. Geophys. Res. 81 , 3671-3676 . Hayenga, C. O., and J. W. Warwick (1981). Two-dimensional interferometric positions of VHF lightning sources, J. Geophys. Res. 86 , 7451-7462 . Holden, D. N., G. R. Holmes, C. B. Moore, W. P. Winn, J. W. Cobb, J. E. Griswold, and D. M. Lytle (1983). Local charge concentra

THE ELECTRICAL STRUCTURE OF THUNDERSTORMS 112 tions in thunderclouds, in Proceedings in Atmospheric Electricity , L. H. Ruhnke and J. Latham, eds., Deepak Publ., Hampton, Va., pp. 179-183 . Holmes, C. R., C. B. Moore, R. Rogers, and E. Szymanski (1977). Radar study of precipitation development in thunderclouds, in Electrical Processes in Atmospheres , H. Dolezalek and R. Reiter, eds., Steinkopff, Darmstadt, pp. 623-627 . Holmes, C. R., E. W. Szymanski, S. J. Szymanski, and C. B. Moore (1980). Radar and acoustic study of lightning, J. Geophys. Res. 85 , 7517-7532 . Illingworth, A. J. (1985). Charge separation in thunderstorms: small scale processes, J. Geophys. Res. 90 , 6026-6032 . Illingworth, A. J., and P. R. Krehbiel (1981). Thunderstorm electricity, Phys. Technol. 12 , 122-128, 139 . Illingworth, A. J., and J. Latham (1977). Calculations of electric field growth, field structure and charge distributions in thunderstorms, Q. J. R. Meteorol. Soc. 103 , 281-295 . Jacobson, E. A., and E. P. Krider (1976). Electrostatic field changes produced by Florida lightning, J. Atmos. Sci. 33 , 103-117 . Jayaratne, E. R., C. P. R. Saunders, and J. Hallett (1983). Laboratory studies of the charging of soft-hail during ice crystal interactions, Q. J. R. Meteorol. Soc. 109 , 609-630 . Krehbiel, P. R. (1981). An analysis of the electric field change produced by lightning, Ph.D. thesis, Univ. of Manchester Institute of Science and Technology. Krehbiel, P. R. (1984). Corona electrification: A possible means for sustaining or enhancing the electrification of storms, in Proceedings VII International Conference on Atmospheric Electricity , American Meteorological Society, Boston, Mass., pp. 188-189 . Krehbiel, P. R., M. Brook, and R. A. McCrory (1979). An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res. 84 , 2432-2456 . Krehbiel, P. R., M. Brook, R. L. Lhermitte, and C. L. Lennon (1983). Lightning charge structure in thunderstorms, in Proceedings in Atmospheric Electricity , L. H. Ruhnke, and J. Lathan, eds., Deepak Publ., Hampton, Va., pp. 408-410 . Krehbiel, P. R., R. Tennis, M. Brook, E. W. Holmes, and R. Comes (1984a). A comparative study of the initial sequence of lightning in a small Florida thunderstorm, in Proceedings VII International Conference on Atmospheric Electricity , American Meteorological Society, Boston, Mass., pp. 279-285 . Krehbiel, P. R., M. Brook, S. Khanna-Gupta, C. L. Lennon, and R. Lhermitte (1984b). Some results concerning VHF lightning radiation from the real-time LDAR system at KSC, Florida, in Proceedings VII International Conference on Atmospheric Electricity , American Meteorological Society, Boston, Mass., pp. 388-393 . Krider, E. P., and R. J. Blakeslee (1985). The electric currents produced by thunderclouds, J. Electrostatics 16 , 369-378 . Krider, E. P., and J. A. Musser (1982). Maxwell currents under thunderstorms, J. Geophys. Res. 87 , 11171-11176 . Larsen, H. R., and E. J. Stansbury (1974). Association of lightning flashes with precipitation cores extending to height 7 km, J. Atmos. Terr. Phys. 36 , 1547-1553 . Latham, J. (1981). The electrification of thunderstorms, Q. J. R. Meteorol. Soc. 107 , 277-298 . Lhermitte, R., and P. R. Krehbiel (1979). Doppler radar and radio observations of thunderstorms, IEEE Trans. Geosci. Electr. GE-17 , 162-171 . Lhermitte, R., and E. Williams (1983). Cloud electrification, Rev. Geophys. Space Phys. 21 , 984-992 . Lhermitte, R., and E. Williams (1985a). Doppler radar and electric field signatures of downbursts in convective storms, EOS 66 , 839 . Lhermitte, R., and E. Williams (1985b). Thunderstorm electrification: A case study, J. Geophys. Res. 90, 6071-6078 . Ligda, M. G. H. (1956). The radar observation of lightning, J. Atmos. Terr. Phys. 9 , 329-346 . Livingston, J. M., and E. P. Krider (1978). Electric fields produced by Florida thunderstorms, J. Geophys. Res. 83 , 385-401 . Loeb, L. B. (1953). Experimental contributions to knowledge of thunderstorm electricity, in Thunderstorm Electricity , H. R. Byers, ed., Univ. of Chicago Press, Chicago, pp. 150-192 . MacGorman, D. R. (1978). Lightning location in a storm with strong wind shear, Ph.D. dissertation, Rice Univ., Houston, Tex. MacGorman, D. R., A. A. Few, and T. L. Teer (1981). Layered lightning activity, J. Geophys. Res. 86 , 9900-9910 . Malan, D. J., and B. F. J. Schonland (1951). The distribution of electricity in thunderclouds, Proc. R. Soc. Ser. A 209 , 158-177 . Marshall, T. C., and S. J. Marsh (1985). A thunderstorm sounding of charges and electric field, EOS 66 , 840 . Marshall, T. C., and W. P. Winn (1982). Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers, J. Geophys. Res. 87 , 7141-7157 . Mason, B. J. (1976). In reply to a critique of precipitation theories of thunderstorm electrification by C. B. Moore, Q. J. R. Meteorol. Soc. 102 , 219-225 . Mazur, V., J. C. Gerlach, and W. D. Rust (1984). Lightning flash density versus altitude and storm structure from observations with UHF-and S-band radars, Geophys. Res. Lett. 11 , 61-64 . Mazur, V., D. S. Zrnic, and W. D. Rust (1985). Lightning channel properties determined with a vertically pointing Doppler radar, J. Geophys. Res. 90 , 6165-6174 . Moore, C. B. (1963). Charge generation in thunderstorms, in Problems in Atmospheric and Space Electricity , S. C. Coroniti, ed., Elsevier, Amsterdam, pp. 255-262 . Moore, C. B. (1976a). Reply to "In reply to a critique of precipitation theories of thunderstorm electrification by C. B. Moore" by B. J. Mason, Q. J. R. Meteorol. Soc. 102 , 226-240 . Moore, C. B. (1976b). Reply to "Further comments on Moore's criticisms of precipitation theories of thunderstorm electrification," Q. J. R. Meteorol. Soc. 102 , 935-939 . Moore, C. B. (1977). An assessment of thunderstorm electrification mechanisms, in Electrical Processes in Atmospheres , H. Dolezalek and R. Reiter, eds., Steinkopff, Darmstadt, pp. 333-352 . Moore, C. B., and B. Vonnegut (1977). The thundercloud, in Lightning , Vol. 1 , R. H. Golde, ed., Academic Press, New York, pp. 51-98 . Moore, C. B., B. Vonnegut, and A. T. Botka (1958). Results of an experiment to determine initial precedence of organized electrification and precipitation in thunderstorms, in Recent Advances in Atmospheric Electricity , L. G. Smith, ed., Pergamon, New York, pp. 333-360 . Moore, C. B., B. Vonnegut, E. A. Vrablik, and D. A. McCaig (1964). Gushes of rain and hail after lightning, J. Atmos. Sci. 21 , 646-665 . Moore, C. B., C. P. Migotsky, and B. Vonnegut (1985). Further observations of inverted polarity clouds, EOS 66 , 841 . Proctor, D. E. (1971). A hyperbolic system for obtaining VHF radio pictures of lightning, J. Geophys. Res. 76 , 1478-1489 . Proctor, D. E. (1981). VHF radio pictures of cloud flashes, J. Geophys. Res. 86 , 4041-4071 . Proctor, D. E. (1983). Lightning and precipitation in a small multicellular thunderstorm, J. Geophys. Res. 88 , 5421-5440 . Rayleigh (Lord) (1879). The influence of electricity on colliding water drops, Proc. R. Soc. (London) 28 , 406-409 . Reynolds, S. E., and M. Brook (1956). Correlation of the initial electric field and the radar echo in thunderstorms, J. Meteorol. 13 , 376-380 . Reynolds, S. E., and H. W. Neill (1955). The distribution and discharge of thunderstorm charge centers, J. Meteorol. 12 , 1-12 .

THE ELECTRICAL STRUCTURE OF THUNDERSTORMS 113 Reynolds, S. E., M. Brook, and M. F. Gourley (1957). Thunderstorm charge separation, J. Meteorol. 14 , 426-436 . Richard, P., A. Delannoy, G. Labaune, and P. Laroche (1986). Results of spatial and temporal characterization of the VHF-UHF radiation of lightning, J. Geophys. Res. 91 , 1248-1260 . Richards, C. N., and G. A. Dawson (1971). The hydrodynamic instability of water drops falling at terminal velocity in vertical electric fields, J. Geophys. Res. 76 , 3445-3455 . Rust, W. D., and C. B. Moore (1974). Electrical conditions near the bases of thunderclouds over New Mexico, Q. J. R. Meteorol. Soc. 100 , 450-468 . Rust, W. D., W. L. Taylor, D. R. MacGorman, and R. T. Arnold (1981). Research on electrical properties of severe thunderstorms in the Great Plains, Bull. Am. Meteorol. Soc. 62 , 1286-1293 . Simpson, G. C., and F. J. Scrase (1937). The distribution of electricity in thunderclouds, Proc. R. Soc. Ser. A 161 , 309-352 . Standler, R. B., and W. P. Winn (1979). Effects of coronae on electric fields beneath thunderstorms, Q. J. R. Meteorol. Soc. 105 , 285-302 . Szymanski, E. W., S. J. Szymanski, C. R. Holmes, and C. B. Moore (1980). An observation of a precipitation echo intensification associated with lightning, J. Geophys. Res. 85 , 1951-1953 . Takahashi, T. (1978). Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci. 35 , 1536-1548 . Taylor, W. L. (1978). A VHF technique for space-time mapping of lightning discharge processes, J. Geophys. Res. 83 , 3575-3583 . Taylor, W. L. (1983). Lightning location and progression using VHF space-time mapping technique, in Proceedings in Atmospheric Electricity , L. H. Ruhnke and J. Latham, eds., Deepak Publ., Hampton, Va., pp. 381-384 . Taylor, W. L., W. D. Rust, D. R. MacGorman, and E. A. Brandes (1983). Lightning activity observed in upper and lower portions of storms and its relationship to storm structure from VHF mapping and Doppler radar, in Proceedings, 8th International Aerospace and Ground Conference on Lightning and Static Electricity , available from National Technical Information Service, Springfield, Va., pp. 4-1 to 4-9 . Taylor, W. L., E. A. Brandes, W. D. Rust, and D. R. MacGorman (1984). Lightning activity and severe storm structure, Geophys. Res. Lett. 11 , 545-548 . Teer, T. L., and A. A. Few (1974). Horizontal lightning, J. Geophys. Res. 79 , 3436-3441 . Vonnegut, B. (1953). Possible mechanism for the formation of thunderstorm electricity, Bull. Am. Meteorol. Soc. 34 , 378-381 . Vonnegut, B. (1982). The physics of thunderclouds, in CRC Handbook of Atmospherics , Vol. 1 , H. Volland, ed., CRC Press, Boca Raton, Fla., pp. 1-22 . Vonnegut, B. (1983a). Comments on "The electrification of thunderstorms" by J. Latham, Q. J. R. Meteorol. Soc. 109 , 262-265 . Vonnegut, B. (1983b). Deductions concerning accumulations of electrified particles in thunderclouds based on electric field changes associated with lightning, J. Geophys. Res. 88 , 3911-3912 . Vonnegut, B., and C. B. Moore (1960). A possible effect of lightning discharge on precipitation formation process, in Physics of Precipitation , Monograph No. 5, American Geophysical Union, Washington, D. C., pp. 287-290 . Vonnegut, B., C. B. Moore, T. Rolan, J. Cobb, D. N. Holden, S. McWilliams, and G. Cadwell (1984). Inverted electrification in thunderclouds growing over a source of negative charge, EOS 65 , 839 . Warwick, J. W., C. O. Hayenga, and J. W. Brosnahan (1979). Interferometric directions of lightning sources at 34 MHz, J. Geophys. Res. 84 . 2457-2468 . Weber, M. E., H. J. Christian, A. A. Few, and M. F. Stewart (1982). A thunderstorm electric field sounding: Charge distribution and lightning, J. Geophys. Res. 87 , 7158-7169 . Williams, E. R. (1981). Thunderstorm electrification: Precipitation vs. convection, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Mass. Williams, E. R. (1985). Large-scale charge separation in thunderclouds, J. Geophys. Res. 90 , 6013-6025 . Williams, E. R., and R. M. Lhermitte (1983). Radar tests of the precipitation hypothesis for thunderstorm electrification, J. Geophys. Res. 88 , 10984-10992 . Williams, E. R., C. M. Cooke, and K. A. Wright (1985). Electrical discharge propagation in and around space charge clouds, J. Geophys. Res. 90 , 6059-6070 . Wilson, C. T. R. (1920). Investigations on lightning discharges and on the electric field of thunderstorms, Phil. Trans. R. Soc. Ser. A 221 , 73-115 . Wilson, C. T. R. (1929). Some thundercloud problems, J. Franklin Inst. 208 , 1-12 . Winn, W. P., and L. G. Byerley (1975). Electric field growth in thunderclouds, Q. J. R. Meteorol. Soc. 101 , 979-994 . Winn, W. P., G. W. Schwede, and C. B. Moore (1974). Measurements of electric fields in thunderclouds, J. Geophys. Res. 79 , 1761-1767 . Winn, W. P., C. B. Moore, C. R. Holmes, and L. G. Byerley (1978). Thunderstorm on July 16, 1975, over Langmuir Laboratory: A case study, J. Geophys. Res. 83 , 3079-3092 . Winn, W. P., C. B. Moore, and C. R. Holmes (1981). Electric field structure in an active part of a small, isolated thundercloud, J. Geophys. Res. 86 , 1187-1193 . Workman, E. J., and S. E. Reynolds (1949). Electrical activity as related to thunderstorm cell growth, Bull. Am. Meteorol. Soc. 30 , 142-144 . Workman, E. J., R. E. Holzer, and G. T. Pelsor (1942). The electrical structure of thunderstorms, Aeronaut. Tech. Note 864 , National Advisory Committee on Aeronautics, Washington, D.C., pp. 1-47 . Zrnic, D. S., W. D. Rust, and W. L. Taylor (1982). Doppler radar echoes of lightning and precipitation at vertical incidence, J. Geophys. Res. 87 , 7179-7191 .

Next: INTRODUCTION »
The Earth's Electrical Environment Get This Book
×
Buy Paperback | $75.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This latest addition to the Studies in Geophysics series explores in scientific detail the phenomenon of lightning, cloud, and thunderstorm electricity, and global and regional electrical processes. Consisting of 16 papers by outstanding experts in a number of fields, this volume compiles and reviews many recent advances in such research areas as meteorology, chemistry, electrical engineering, and physics and projects how new knowledge could be applied to benefit mankind.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!