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INTRODUCTION 

 

Context 

 

Very detailed health information about participants is collected during clinical trials. A 

number of different stakeholders would typically have access to individual-level participant data 

(IPD), including the study sites, the sponsor of the study, statisticians, Institutional Review 

Boards (IRBs), and regulators. By IPD we mean individual-level data on trial participants, which 

is more than the information that is typically included, for example, in clinical study reports 

(CSRs). 

There is increasing pressure to share IPD more broadly than occurs at present. There are 

many reasons for such sharing, such as transparency in the trial and wider disclosure of adverse 

events that may have transpired, or to facilitate the reuse of such data for secondary purposes, 

specifically in the context of health research (Gøtzsche, 2011; IOM, 2013; Vallance and 

Chalmers, 2013). Many funding agencies tasked with the oversight of research, as well as its 

funding, are requiring that data collected by the projects they support be made available to others 

(MRC, 2011; NIH, 2003; Wellcome Trust, 2011). There are current efforts by regulators, such as 

the European Medicines Agency (EMA, 2014a,b), to examine how to make IPD from clinical 

trials shared more widely (IOM, 2013). In many cases, however, privacy concerns have been 

stated as a key obstacle to making these data available (Castellani, 2013; IOM, 2013). 

One way in which privacy issues can be addressed is through the protection of the 

identities of the corresponding research participants. Such “de-identified” or “anonymized” 

health data (the former term being popular in North America, and the latter in Europe and other 
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regions) are often considered to be sufficiently devoid of personal health information in many 

jurisdictions around the world. As such, many privacy laws allow the data to be used and 

disclosed for any secondary purposes with participant consent. As long as the data are 

appropriately de-identified, many privacy concerns associated with data sharing can be readily 

addressed.  

It should be recognized that de-identification is not, by any means, the only privacy 

concern that needs to be addressed when sharing clinical trial data. In fact, there must be a level 

of governance in place to ensure that the data will not be analyzed or used to discriminate against 

or stigmatize the participants or certain groups (e.g., religious or ethnic) associated with the 

study. This is because discrimination and stigmatization can occur even if the data are de-

identified. 

This paper describes a high-level risk-based methodology that can be followed to de-

identify clinical trial IPD. To contextualize our review and analysis of de-identification, we also 

touch upon additional governance mechanisms, but we acknowledge that a complete treatment of 

governance is beyond the scope of this paper. Rather, the primary focus here is only on the 

privacy protective elements.  

 

Data Recipients, Sponsors, and Adversaries 

 

Clinical trial data may be disclosed by making them completely public or through a 

request mechanism. The data recipient may be a qualified investigator (QI) who must meet 

specific criteria. There may be other data recipients who are not QIs as well. If the data are made 

publicly available with no restrictions, however, then other types of users may access the data, 



   

 

4 
 

such as journalists and nongovernmental organizations (NGOs). In our discussions we refer to 

the data recipient as the QI as a primary exemplar, although this is not intended to exclude other 

possible data recipients (it does make the presentation less verbose). 

Data are being disclosed to the QI by the sponsor. We use the term “sponsor” generally to 

refer to all data custodians who are disclosing IPD, recognizing that the term may mean different 

entities depending on the context. It may not always be the case that the sponsor is a 

pharmaceutical company or a medical device company. For example, a regulator may decide to 

disclose the data to a QI, or a pharmaceutical company may provide the data to an academic 

institution, whereby that institution becomes the entity that discloses the data. 

The term  “adversary” is often used in the disclosure control literature to refer to the role 

of the individual or entity that is trying to re-identify data subjects. Other terms used are  

“attacker” and “intruder.” Discussions about the QI being a potential adversary are not intended 

to paint QIs as having malicious objectives. Rather, in the context of a risk assessment, one must 

consider a number of possible data recipients as being potential adversaries and manage the re-

identification risk accordingly. 

 

Data Sharing Models 

 

A number of different ways to provide access to IPD have been proposed and used, each 

with different advantages and risks (Mello et al., 2013). First, there is the traditional public data 

release where anyone can get access to the data with no registration or conditions. Examples of 

such releases include the publicly available clinical trial data from the International Stroke Trial 
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(IST) (Sandercock et al., 2011) and data posted to the Dryad online open access data repository 

(Dryad, undated; Haggie, 2013).  

A second form of data sharing, which is more restrictive, occurs when there exists a 

formal request and approval process to obtain access to clinical trial data, such as the 

GlaxoSmithKline (GSK) trials repository (Harrison, 2012; Nisen and Rockhold, 2013); Project 

Data Sphere (whose focus is on oncology trial data) (Bhattacharjee, 2012; Hede, 2013); the Yale 

Open Data Access (YODA) Project, which is initially making trial data from Medtronic available 

(CORE, 2014; Krumholz and Ross, 2011); and the Immunology Database and Analysis Portal 

(Immport), which is restricted to researchers funded by the Division of Allergy, Immunology, 

and Transplantation of the National Institute of Allergy and Infectious Diseases (DAIT/NIAID), 

other approved life science researchers, National Institutes of Health employees, and other 

preauthorized government employees (ImmPort, undated). More recently, pharmaceutical 

companies have created the clinicalstudydatarequest.com website, which facilitates data requests 

to multiple companies under one portal. Following this restrictive model, a request can be 

processed by the study sponsor or by a delegate of the sponsor (e.g., an academic institution). 

A hybrid of the above approaches is a quasi-public release where the data user must agree 

to some terms of use or sign a “click-through” contract. Click-through contracts are online terms 

of use that may place restrictions on what can be done with the data and how the data are 

handled. Regardless, anyone can still download such data. For example, public analytics 

competition data sets, such as the Heritage Health Prize (El Emam et al., 2012), and data-centric 

software application development competitions, such as the Cajun Code Fest (Center for 
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Business and Information Technologies, 2013), fall into this category. In practice, however, 

click-through terms are not common for the sharing of clinical trial IPD.
1
 

A form of data access that does not require any data sharing is when analysts request that 

the data controller perform an analysis on their behalf. Since this does not involve the sharing of 

IPD, it is a scenario that we do not consider further in this paper. 

 

Data Sharing Mechanisms 

 

Different mechanisms can be used to share IPD. Clinical trial IPD can be shared either as 

microdata or through an online portal. The term “microdata” is commonly used in the disclosure 

control literature to refer to individual-level raw data (Willenborg and de Waal, 1996, 2001). 

These microdata may be in the form of one or more flat files or relational databases. 

When disclosed as microdata, the data are downloaded as a raw data file that can be 

analyzed by QIs on their own machines, using their own software if they so wish to do so. The 

microdata can be downloaded through a website, sent to the QI on a disc, or transferred 

electronically. If access is through a website, the QI may have to register, sign a contract, or go 

through other steps before downloading the data. 

When a portal is used, the QI can access the data only through a remote computer 

interface, such that the raw data reside on the sponsor’s computers, and all analysis performed is 

on the sponsor’s computers. Data users do not download any microdata to their own local 

computers through this portal. Under this model, all actions can be audited. 

                                                 
1
 Although the EMA has recently proposed using an online portal to share CSRs using a simple terms-of-use setup, 

this was not intended to apply to IPD. 
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A public online portal allows anyone to register and get access to the IPD. Otherwise, the 

access mechanism requires a formal request process.  

De-identification is relevant in both of the aforementioned scenarios. When data are 

provided as microdata, the de-identification process ensures that each record is protected from 

the QI and his/her staff as the potential adversary. When data are shared through the portal, a QI 

or his/her staff may inadvertently recognize a data subject because that data subject is a neighbor, 

relative, coworker, or famous person (see Box 1).  
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BOX 1 

Types of Re-identification Attacks 

 

 For public data, the sponsor needs to make a worst-case assumption and protect against 

an adversary who is targeting the data subjects with the highest risk of re-identification. 

For a nonpublic data set, we consider three types of attacks: 

 

 a deliberate re-identification by the data recipient (or his/her staff and 

subcontractors); 

 an inadvertent re-identification by the data recipient (or his/her staff and 

subcontractors); and 

 a data breach, where data are accidentally exposed to a broader audience. 

 

 These three cases are relevant when microdata are being disclosed. If the data are made 

available through a portal, we assume that the sponsor will ensure that stringent controls and 

appropriate auditing are in place, which manages risks from the first and third types of attack. In 

such a case, the second type of attack, where data may be inadvertently re-identified, becomes 

the primary risk that needs to be managed. An example is if the statistician working with the data 

inadvertently recognizes someone he or she knows. 

 

 

The different approaches for sharing clinical trial IPD are summarized in Figure 1. 
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 Microdata Online Portal 

Public LEAST CONTROL BY 

SPONSOR 

LIMIT CONSTRAINTS ON QI 

 

Formal Request  MOST CONTROL BY SPONSOR 

SIGNIFICANT CONSTRAINTS 

ON QI 

 Risks 

 Deliberate re-identification 

 Inadvertent re-identification 

 Accidental release and re-

identification 

Risks 

 Inadvertent re-identification 

FIGURE 1 Different approaches for sharing clinical trial data. 

 

Scope of Data to Be De-identified 

 

It is important to make a distinction between biological, and particularly genomic, data 

and other types of data. Many clinical trials are creating biorepositories. These may have a 

pseudonym or other unique identifier for the participant, and a sample or data. The de-

identification methods we describe in this paper are applicable to clinical, administrative, and 

survey data. Genomic data raise a different set of issues. These issues are addressed directly in a 

later section of this paper. 

 Clinical trial data can be shared at multiple levels of detail. For example, the data can be 

raw source data or analysis-ready data. We assume that the data are analysis-ready and that no 

data cleansing is required before de-identification. 

 

Existing Standards for De-identification 
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Various regulations associated with data protection around the world permit the sharing 

of de-identified (or similarly termed) data. For instance, EU Data Protection Directive 95/46/EC, 

which strictly prohibits secondary uses of person-specific data without individual consent, 

provides an exception to the ruling in Recital 26, which states that the “principles of protection 

shall not apply to data rendered anonymous in such a way that the data subject is no longer 

identifiable.” However, what does it mean for data to be “identifiable”? How do we know when 

they are no longer identifiable? The Data Protection Directive, and similar directives around the 

world, do not provide explicit guidelines regarding how data should be protected. An exception 

to this rule is a code of practice document published by the U.K. Information Commissioner’s 

Office (ICO) (ICO, 2012). And while this document provides examples of de-identification 

methods and issues to consider when assessing the level of identifiability of data, it does not 

provide a full methodology or specific standards to follow.  

There are, however, de-identification standards provided in the Privacy Rule of the U.S. 

Health Insurance Portability and Accountability Act of 1996 (HIPAA) and subsequent guidance 

published by the Office for Civil Rights (OCR) at the U.S. Department of Health and Human 

Services (HHS) (HHS, 2012). This rule is referred to by many regulatory frameworks around the 

world, and the principles are strongly related to those set forth in the United Kingdom’s code of 

practice document mentioned above. 

Two of the key existing standards for the de-identification of health microdata are 

described in the HIPAA Privacy Rule. It should be recognized that HIPAA applies only to 

“covered entities” (i.e., health plans, health care clearinghouses, and health care providers that 

transmit health information electronically) in the United States. It is likely that in many 

instances, the sponsors of clinical trials will not fall into this class. However, these de-
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identification standards have been in place for approximately a decade, and there is therefore a 

considerable amount of real-world experience in their application. They can serve as a good 

launching point for examining best practices in this area. For the disclosure of clinical trial data, 

the HIPAA Privacy Rule de-identification standards offer a practically defensible foundation 

even if they are not a regulatory requirement. 

According to section 164.514 of the HIPAA Privacy Rule, “health information that does 

not identify an individual and with respect to which there is no reasonable basis to believe that 

the information can be used to identify an individual is not individually identifiable health 

information.” Section 164.514(b) of the Privacy Rule contains the implementation specifications 

that a covered entity, or affiliated business associate, must follow to meet the de-identification 

standard. In particular, the Privacy Rule outlines two routes by which health data can be 

designated as de-identified. These are illustrated in Figure 2. 

 

 

FIGURE 2 The two de-identification standards in the HIPAA Privacy Rule. 

SOURCE: Reprinted from a document produced by OCR (HHS, 2012).  
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 The first route is the “Safe Harbor” method. Safe Harbor requires the manipulation of 18 

fields in the data set as described in Box 2. The Privacy Rule requires that a number of these data 

elements be “removed.” However, there may be acceptable alternatives to actual removal of 

values as long as the risk of reverse engineering the original values is very small. Compliance 

with the Safe Harbor standard also requires that the sponsor not have any actual knowledge that a 

data subject can be re-identified. Assumptions of the Safe Harbor method are listed in Box 3. 

 

BOX 2 

The Safe Harbor De-identification Standard 

 

1. Names; 

2. All geographic subdivisions smaller than a state, including street address, city, county, 

precinct, zip code, and their equivalent geocodes, except for the initial three digits of a 

zip code if, according to the current publicly available data from the Bureau of the 

Census: 

a) The geographic unit formed by combining all zip codes with the same three initial 

digits contains more than 20,000 people; and 

b) The initial three digits of a zip code for all such geographic units containing 

20,000 or fewer people is changed to 000. 

3. All elements of dates (except year) for dates directly related to an individual, including 

birth date, admission date, discharge date, date of death; and all ages over 89 and all 
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elements of dates (including year) indicative of such age, except that such ages and 

elements may be aggregated into a single category of age 90 or older;  

4. Telephone numbers; 

5. Fax numbers; 

6. Electronic mail addresses; 

7. Social security numbers; 

8. Medical record numbers; 

9. Health plan beneficiary numbers; 

10. Account numbers; 

11. Certificate/license numbers; 

12. Vehicle identifiers and serial numbers, including license plate numbers; 

13. Device identifiers and serial numbers; 

14. Web universal resource locators (URLs); 

15. Internet protocol (IP) address numbers; 

16. Biometric identifiers, including finger and voice prints; 

17. Full face photographic images and any comparable images; and 

18. Any other unique identifying number, characteristic, or code. 

 

 

BOX 3 

Assumptions of the HIPAA Safe Harbor Method 
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 There are only two quasi-identifiers that need to be manipulated in a data set: dates and 

zip codes. 

 The adversary does not know who is in the data set (i.e., would not know which 

individuals participated in the clinical trial). 

 All dates are quasi-identifiers. 

 

While the application of Safe Harbor is straightforward, however, there are clearly 

instances in which dates and more fine-grained geographic information are necessary. In practice 

the Safe Harbor standard would remove critical geospatial and temporal information from the 

data (see items 2 and 3 in Box 2), potentially reducing the utility of the data. Many meaningful 

analyses of clinical trial data sets require the dates and event order to be clear. For example, in a 

Safe Harbor data set, it would not be possible to include the dates when adverse events occurred. 

In recognition of the limitations of de-identification via Safe Harbor, the HIPAA Privacy 

Rule provides for an alternative in the form of the Expert Determination method. This method 

has three general requirements: 

 

 The de-identification must be based on generally accepted statistical and scientific 

principles and methods for rendering information not individually identifiable. This 

means that the sponsor needs to ensure that there is a body of work that justifies and 

evaluates the methods that are used for the de-identification, and that these methods 

must be generally known (i.e., undocumented methods or proprietary methods that 

have never been published would be difficult to classify as “generally accepted”).  
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 The risk of re-identification needs to be very small such that the information could not 

be used, alone or in combination with other reasonably available information, by an 

anticipated recipient to identify an individual who is a subject of the information. 

However, the mechanism for measuring re-identification risk is not defined in the 

HIPAA Privacy Rule, and what would be considered very small risk also is not 

defined. Therefore, the de-identification methodology must include some manner of 

measuring re-identification risk in a defensible way, and have a repeatable process to 

follow that allows for the definition of very small risk. 

 Finally, the methods and results of the analysis that justify such determination must 

be documented. While the basic principles of de-identification are expected to be 

consistent across all clinical trials, the details will be different for each study, and 

these details also need to be documented.  

 

These conditions are reasonable for a de-identification methodology and are consistent with the 

guidance that has been produced by other agencies and regulators (Canadian Institute for Health 

Information, 2010; ICO, 2012). They also serve as a set of conditions that must be met for the 

methods described here. 

 

Unique and Derived Codes under HIPAA 

 

According to the 18th item in Safe Harbor (see Box 2), “any unique identifying number, 

characteristic, or code” must be removed from the data set; otherwise it would be considered 

personal health information. However, in lieu of removing the value, it may be hashed or 

encrypted. This would be called a “pseudonym.” For example, the unique identifier may be a 
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participant’s clinical trial number, and this is encrypted with a secret key to create a pseudonym. 

A similar scheme for creating pseudonyms would be used under the Expert Determination 

method. 

However, in the HIPAA Privacy Rule at § 164.514(c), it is stated that any code that is 

derived from information about an individual is considered identifiable data. However, such 

pseudonyms are practically important for knowing which records belong to the same clinical trial 

participant and constructing the longitudinal record of a data subject. Not being able to create 

derived pseudonyms means that random pseudonyms must be created. To be able to use random 

pseudonyms, one must maintain a crosswalk between the individual identity and the random 

pseudonym. The crosswalk allows the sponsor to use the same pseudonym for each participant 

across data sets and to allow re-identification at a future date if the need arises. These 

crosswalks, which are effectively linking tables between the pseudonym and the information 

about the individual, arguably present an elevated privacy risk because clearly identifiable 

information must now be stored somehow. Furthermore, the original regulations did not impose 

any controls on this crosswalk table. 

For research purposes, the Common Rule will also apply. Under the Common Rule, 

which guides IRBs, if the data recipient has no means of getting the key, for example, through an 

agreement with the sponsor prohibiting the sharing of keys under any circumstances or through 

organizational policies prohibiting such an exchange, then creating such derived pseudonyms is 

an acceptable approach (HHS, 2004, 2008b). 

Therefore, there is an inconsistency between the Privacy Rule and the Common Rule in 

that the former does not permit derived pseudonyms, while the latter does. This is well 

documented (Rothstein, 2005, 2010). However, in the recent guidelines from OCR, this is 
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clarified to state that “a covered entity may disclose codes derived from PHI as part of a de-

identified data set if an expert determines that the data meets the de-identification requirements 

at §164.514(b)(1)” (HHS, 2012). This means that a derived code, such as an encryption or hash 

function, can be used as a pseudonym as long as there is assurance that the means to reverse that 

pseudonym are tightly controlled. There is now clarity and consistency among rules in that if 

there is a defensible mechanism whereby reverse engineering a derived pseudonym has a very 

small probability of being successful, this is permitted. 

 

Is it Necessary to Destroy Original Data? 

 

Under the Expert Determination method, the re-identification risk needs to be managed 

assuming that the adversary is “an anticipated recipient” of the data. This limits the range of 

adversaries that needs to be considered because in our context, the anticipated recipient is the QI. 

However, under the EU Data Protection Directive, the adversary may be the “data 

controller or any other person.” The data controller is the sponsor or the QI receiving the de-

identified data. There are a number of challenges with interpreting this at face value.  

One practical issue is that the sponsor will, by definition, be able to re-identify the data 

because the sponsor will retain the original clinical trial data set. The Article 29 Working Party 

has proposed that, effectively, the sponsor needs to destroy or aggregate the original data to be 

able to claim that the data provided to the QI are truly de-identified (Article 29 Data Protection 

Working Party, 2014). This means that the data are not de-identified if there exists another data 

set that can re-identify it, even in the possession of another data controller. Therefore, because 

the identified data exist with the sponsor, the data provided to the QI cannot be considered de-

identified. This is certainly not practical because the original data are required for legal reasons 
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(e.g., clinical trial data need to be retained for an extended period of time whose duration 

depends on the jurisdiction). Such a requirement would discourage de-identification by sponsors 

and push them to share identifiable data, which arguably would increase the risk of re-

identification for trial participants significantly. 

In an earlier opinion the Article 29 Data Protection Working Party (2007) emphasized the 

importance of “likely reasonable” in the definition of identifiable information in the 95/46/EC 

Directive. In that case, if it is not likely reasonable that data recipients would be able to readily 

re-identify the anonymized data because they do not have access to the original data, those 

anonymized data would not be considered personal information. That would seem to be a more 

reasonable approach that is consistent with interpretations in other jurisdictions. 

 

Is De-identification a Permitted Use? 

 

Retroactively obtaining participant consent to de-identify data and use them for 

secondary analysis may introduce bias in the data set (El Emam, 2013). If de-identification is a 

permitted use under the relevant regulations, then de-identification can proceed without seeking 

participant consent. Whether that is the case will depend on the prevailing jurisdiction. 

Under HIPAA and extensions under the Health Information Technology for Economic 

and Clinical Health (HITECH) Omnibus Rule, de-identification is a permitted use by a covered 

entity. However, a business associate can de-identify a data set only if the business associate 

agreement explicitly allows for that. Silence on de-identification in a business associate 

agreement is interpreted as not permitting de-identification. 
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In other jurisdictions, such as Ontario, the legislation makes explicit that de-identification 

is a permitted use (Perun et al., 2005). 

 

Terminology 

 

Terminology in this area is not always clear, and different authors and institutions use the 

same terms to mean different things or different terms to mean the same thing (Knoppers and 

Saginur, 2005). Here, we provide the terminology and definitions used in this paper. 

The International Organization for Standardization (ISO) Technical Specification on the 

pseudonymization of health data defines relevant terminology for our purposes. The term 

“anonymization” is defined as a “process that removes the association between the identifying 

data set and the data subject” (ISO, 2008). This is consistent with current definitions of “identity 

disclosure,” which corresponds to assigning an identity to a data subject in a data set (OMB, 

1994; Skinner, 1992). For example, an identity disclosure would transpire if the QI determined 

that the third record (ID = 3) in the example data set in Table 1 belonged to Alice Brown. Thus, 

anonymization is the process of reducing the probability of identity disclosure to a very small 

value. 

 

TABLE 1 An Example of Data Used to Illustrate a Number of Concepts Referred to Throughout 

This Paper 

 

 Quasi-identifiers Other Variables 

ID Sex Year of Birth Lab Test Lab Result 

1 Male 1959 Albumin, Serum 4.8 

2 Male 1969 Creatine kinase 86 

3 Female 1955 Alkaline Phosphatase 66 

4 Male 1959 Bilirubin Negative 

5 Female 1942 BUN/Creatinine Ratio 17 

6 Female 1975 Calcium, Serum 9.2 
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7 Female 1966 Free Thyroxine Index 2.7 

8 Female 1987 Globulin, Total 3.5 

9 Male 1959 B-type natriuretic peptide 134.1 

10 Male 1967 Creatine kinase 80 

11 Male 1968 Alanine aminotransferase 24 

12 Female 1955 Cancer antigen 125 86 

13 Male 1967 Creatine kinase 327 

14 Male 1967 Creatine kinase 82 

15 Female 1966 Creatinine 0.78 

16 Female 1955 Triglycerides 147 

17 Male  1967 Creatine kinase 73 

18 Female 1956 Monocytes 12 

19 Female 1956 HDL Cholesterol 68 

20 Male 1978 Neutrophils 83 

21 Female 1966 Prothrombin Time 16.9 

22 Male 1967 Creatine kinase 68 

23 Male 1971 White Blood Cell Count 13.0 

24 Female 1954 Hemoglobin 14.8 

25 Female 1977 Lipase, Serum 37 

26 Male 1944 Cholesterol, Total 147 

27 Male  1965 Hematocrit 45.3 

 

Arguably, the term “anonymization” would be the appropriate term to use here given its 

more global utilization. However, to remain consistent with the HIPAA Privacy Rule, we use the 

term “de-identification” in this paper. 

Beyond identity disclosure, organizations (and privacy professionals) are, at times, 

concerned about “attribute disclosure” (OMB, 1994; Skinner, 1992). This occurs when a QI 

learns a sensitive attribute about a participant in the database with a sufficiently high probability, 

even if the Q1 does not know which specific record belongs to that patient (Machanavajjhala et 

al., 2007; Skinner, 1992). For example, in Table 1, all males born in 1967 had a creatinekinease 

lab test. Assume that an adversary does not know which record belongs to Almond Zipf (who 

has record ID = 17; see Table 2). However, since Almond is male and was born in 1967, the QI 

will discover something new about him—that he had a test often administered to individuals 

showing symptoms of a heart attack. All known re-identification attacks are identity disclosures 
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and not attribute disclosures (El Emam et al., 2011a).
2
 Furthermore, privacy statutes and 

regulations in multiple jurisdictions, including the HIPAA Privacy Rule, the Ontario Personal 

Health Information Act (PHIPA), and the EU Data Protection Directive, consider identity 

disclosure only in their definitions of personal health information. While participants may 

consider certain types of attribute disclosure to be a privacy violation, it is not considered so 

when the objective is anonymization of the data set. 

 

TABLE 2 Identities of Participants from the Hypothetical Data Set 

ID Name 

1 John Smith 

2 Alan Smith 

3 Alice Brown 

4 Hercules Green 

5 Alicia Freds 

6 Gill Stringer 

7 Marie Kirkpatrick 

8 Leslie Hall 

9 Douglas Henry 

10 Fred Thompson 

11 Joe Doe 

12 Lillian Barley 

13 Deitmar Plank 

14 Anderson Hoyt 

15 Alexandra Knight 

16 Helene Arnold 

17 Almond Zipf 

18 Britney Goldman 

19 Lisa Marie 

20 William Cooper 

21 Kathy Last 

22 Deitmar Plank 

23 Anderson Hoyt 

24 Alexandra Knight 

25 Helene Arnold 

26 Anderson Heft 

27 Almond Zipf 

                                                 
2
 This statement does not apply to genomic data. See the summary of evidence on genomic data later in this paper 

for more detail. 
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Technical methods have been developed to modify the data to protect against attribute 

disclosure (Fung et al., 2010). However, these methods have rarely, if ever, been used in practice 

for the disclosure of health data. One possible reason for this is that they distort the data to such 

an extent that the data are no longer useful for analysis purposes. There are other, nontechnical 

approaches that are more appropriate for addressing the risks of attribute disclosure, and in the 

final section on governance we provide a description of how a sponsor can protect against 

attribute disclosure. Therefore, our focus in this paper is on identity disclosure.  

 

HOW TO MEASURE THE RISK OF RE-IDENTIFICATION 

 

We begin with some basic definitions that are critical for having a meaningful discussion 

about how re-identification works. Along the way, we address some of the controversies around 

de-identification that have appeared in the literature and the media. 

 

Categories of Variables 

 

It is useful to differentiate among the different types of variables in a clinical trial data 

set. The way the variables are handled during the de-identification process will depend on how 

they are categorized. We make a distinction among three types of variables (Samarati, 2001; 

Sweeney, 2002): 

 

 Directly identifying variables. Direct identifiers have two important characteristics: 

(1) one or more direct identifiers can be used to uniquely identify an individual, either 
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by themselves or in combination with other readily available information; and (2) 

they often are not useful for data analysis purposes. Examples of directly identifying 

variables include names, email address, and telephone numbers of participants. It is 

uncommon to perform data analysis on clinical trial participant names and telephone 

numbers. 

 Indirectly identifying variables (quasi-identifiers). Quasi-identifiers are the 

variables about research participants in the data set that a QI can use, either 

individually or in combination, to re-identify a record. If an adversary does not have 

background knowledge of a variable, it cannot be a quasi-identifier. The means by 

which an adversary can obtain such background knowledge will determine which 

attacks on a data set are plausible. For example, the background knowledge may be 

available because the adversary knows a particular target individual in the disclosed 

clinical trial data set, an individual in the data set has a visible characteristic that is 

also described in the data set, or the background knowledge exists in a public or 

semipublic registry. Examples of quasi-identifiers include sex, date of birth or age, 

locations (such as postal codes, census geography, and information about proximity 

to known or unique landmarks), language spoken at home, ethnic origin, aboriginal 

identity, total years of schooling, marital status, criminal history, total income, visible 

minority status, activity difficulties/reductions, profession, event dates (such as 

admission, discharge, procedure, death, specimen collection, visit/encounter), codes 

(such as diagnosis codes, procedure codes, and adverse event codes), country of birth, 

birth weight, and birth plurality.  
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 Other variables. These are the variables that are not really useful for determining an 

individual’s identity. They may or may not be clinically relevant.  

 

 Individuals can be re-identified because of the directly identifying variables and the 

quasi-identifiers. Therefore, our focus is on these two types of variables. 

 

Classifying Variables 

 

An initial step in being able to reason about the identifiability of a clinical trial data set is 

to classify the variables into the above categories. We consider the process for doing so below. 

 

Is It an Identifier? 

 

There are three conditions for a field to be considered an identifier (of either type). These 

conditions were informed by HHS’s de-identification guidelines (HHS, 2012). 

 

Replicability 

The field values must be sufficiently stable over time so that the values will occur 

consistently in relation to the data subject. For example, the results of a patient’s blood glucose 

level tests are unlikely to be replicable over time because they will vary quite a bit. If a field 

value is not replicable, it will be challenging for an adversary to use that information to re-

identify an individual. 
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Distinguishability 

 The variable must have sufficient variability to distinguish among individuals in a data 

set. For example, in a data set of only breast cancer patients, the diagnosis code (at least at a high 

level) will have little variation. On the other hand, if a variable has considerable variation among 

the data subjects, it can distinguish among individuals more precisely. That diagnosis field will 

be quite distinguishable in a general insurance claims database. 

 

Knowability 

An adversary must know the identifiers about the data subject in order to re-identify 

them. If a variable is not knowable by an adversary, it cannot be used to launch a re-

identification attack on the data. 

When we say that a variable is knowable, it also means that the adversary has an identity 

attached to that information. For example, if an adversary has a zip code and a date of birth, as 

well as an identity associated with that information (such as a name), then both the zip code and 

date of birth are knowable. 

Knowability will depend on whether an adversary is an acquaintance of a data subject. If 

the adversary is an acquaintance, such as a neighbor, coworker, relative, or friend, it can be 

assumed that certain things will be known. Things known by an acquaintance will be, for 

example, the subject’s demographics (e.g., date of birth, gender, ethnicity, race, language spoken 

at home, place of birth, and visible physical characteristics). An acquaintance may also know 

some socioeconomic information, such as approximate years of education, approximate income, 

number of children, and type of dwelling. 
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A nonacquaintance will know things about a data subject in a number of different ways, 

in decreasing order of likelihood: 

 

 The information can be inferred from other knowable information or other variables 

that determined to be identifiers. For example, birth weight can often be inferred from 

weeks of gestation. If weeks of gestation are included in the database, birth weight 

can be determined with reasonable accuracy. 

 The information is publicly available. For example, the information is in a public 

registry, or it appears in a newspaper article (say, an article about an accident or a 

famous person). Information can also become public if self-revealed by individuals. 

Examples are information posted on social networking sites and broadcast email 

announcements (e.g., births). It should be noted that only information that many 

people would self-reveal should be considered an identifier. If there is a single 

example or a small number of examples of people who are revealing everything about 

their lives (e.g., a quantified-self enthusiast who is also an exhibitionist), this does not 

mean that this kind of information is an identifier for the majority of the population. 

 The information is in a semipublic registry. Access to these registries may require a 

nominal fee or application process. 

 The information can be purchased from commercial data brokers. Use of commercial 

databases is not inexpensive, so an adversary would need to have a strong motive to 

use such background information. 
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Some of these data sources can be assessed objectively (e.g., whether there is relevant public 

information). In other cases, the decision will be subjective and may vary over time. 

 

A Suggested Process for Determining Whether a Variable Is an Identifier 

A simple way to determine whether a variable is an identifier is to ask an expert, internal 

or external to the sponsor, to do so. There are other, more formal processes that can be used as 

well. 

There are two general approaches to classifying variables. In one approach, two analysts 

who know the data and the data subject population classify the variables independently; then 

some measure of agreement is computed. A commonly used measure of agreement is Cohen’s 

Kappa (Cohen, 1960). If this value is above 0.8, there is arguably general consensus, and the two 

analysts will meet to resolve the classifications on which they had disagreements. The results of 

this exercise are then retained as documentation. 

If the Kappa value is less than 0.8, there is arguably little consensus. In such a case, it is 

recommended that a group of individuals at the sponsor site review the field classifications and 

reach a classification consensus. This consensus then needs to be documented, along with the 

process used to reach it. This process provides the data custodian with a defensible classification 

of variables. 

 

Is It a Direct or Indirect Identifier? 

 

Once a variable has been determined to be an identifier, it is necessary to determine 

whether it is a direct or indirect (quasi-) identifier. If the field uniquely identifies an individual 
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(e.g., a social security number), it will be treated as a direct identifier. If it is not unique, the next 

question is whether it is likely to be used for data analysis. If so, it should be treated as a quasi-

identifier. This is an important decision because the techniques often used to protect direct 

identifiers distort the data and their truthfulness significantly. 

Is it possible to know which fields will be used for analysis at the time that de-

identification is being applied? In many instances, an educated judgment can be made, for 

example, about potential outcome variables and confounders. 

The overall decision rule for classifying variables is shown in Figure 3. 

 

FIGURE 3 Decision rule for classifying identifiers. 

SOURCE: Reprinted with permission from El Emam and colleagues (2014).  
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How Is Re-identification Probability Measured? 

 

 Measurement of re-identification risk is a topic that has received extensive study over 

multiple decades. We examine it at a conceptual level to illustrate key concepts. This discussion 

builds on the classification of variables described above. 

 

The Risk of Re-identification for Direct Identifiers 

 

We define risk as the probability of re-identifying a trial participant. In practice, we 

consider the risk of re-identification for direct identifiers to be 1. If a direct identifier does exist 

in a clinical trial data set, then by definition it will be considered to have a very high risk of re-

identification. 

Strictly speaking, the probability is not always 1. For example, consider the direct 

identifier “Last Name.” If a trial participant is named “Smith,” it is likely that there are other 

people in the trial named “Smith,” and this is even more likely in the community where that 

participant lives. However, assuming that the probability of re-identification is equal to 1 is a 

simplification that has little impact in practice, errs on the conservative side, and makes it 

possible to focus attention on the quasi-identifiers, which is where, in many instances, the most 

data utility lies. 

Two methods can be applied to protect direct identifiers. The first is suppression, or 

removal of the variable. For example, when a clinical trial data set is disclosed, all of the names 

of the participants are stripped from the data set. The second method is to create a pseudonym 
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(ISO, 2008). Pseudonymization is also sometimes called “coding” in the health research 

literature (Knoppers and Saginur, 2005).
3
 There are different schemes and technical methods for 

pseudonymization, such as single and double coding, reversible or irreversible pseudonyms, and 

encryption and hashing techniques. If executed well, pseudonymization ensures that the 

probability of re-identification is very small. There is no need to measure this probability on the 

data after suppression or pseudonymization because in almost all cases, that value is going to be 

very small. 

Quasi-identifiers, however, cannot be protected using such procedures. This is because 

the resulting data, in almost all cases, will not be useful for analytic purposes. Therefore, a 

different set of approaches is required for measuring and de-identifying quasi-identifiers. 

 

The Risk of Re-identification for Quasi-identifiers 

 

Equivalence Classes 

All the records that share the same values on a set of quasi-identifiers are called an 

“equivalence class.” For example, consider the quasi-identifiers in Table 1—sex and age. All the 

records in Table 1 for males born in 1967 (i.e., records 10, 13, 14, 17, and 22) form an 

equivalence class. Equivalence class sizes for a data concept, such as age, potentially change 

during de-identification. For example, there may be five records for males born in 1967. When 

the precision of age is reduced to a 5-year interval, there are eight records for males born 

between 1965 and 1969 (i.e., records 2, 10, 11, 13, 14, 17, 22, and 27). In general, there is a 

                                                 
3
 A case can made for just using the term “coding” rather than the term “pseudonymization” because it is easier to 

remember and pronounce. That is certainly a good reason to use the former term as long as the equivalence of the 

two terms is noted, since “pseudonymization” is the term used in an ISO technical specification. 
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trade-off between the level of detail provided for a data concept and the size of the corresponding 

equivalence classes, with more detail being associated with smaller equivalence classes. 

The most common way to measure the probability of re-identification for a record in a 

data set is for the probability to be equal to 1 divided by the size of its equivalence class. For 

example, record number 14 is in an equivalence class of size five, and therefore its probability of 

re-identification is 0.2. Record number 27 is in an equivalence class of size one and therefore its 

probability of re-identification is equal to 1 divided by 1. Records that are in equivalence classes 

of size one are called “uniques.” In Table 3, we have assigned the probability to each record in 

our example. 

 

TABLE 3 The Data Set in Table 1 with the Probabilities of Re-identification per Record Added 

 Quasi-identifiers  Probability of Re-

identification ID Sex Year of Birth  

1 Male 1959 … 0.33 

2 Male 1969 … 1 

3 Female 1955 … 0.33 

4 Male 1959 … 0.33 

5 Female 1942 … 1 

6 Female 1975 … 1 

7 Female 1966 … 0.33 

8 Female 1987 … 1 

9 Male 1959 … 0.33 

10 Male 1967 … 0.2 

11 Male 1968 … 1 

12 Female 1955 … 0.33 

13 Male 1967 … 0.2 

14 Male 1967 … 0.2 

15 Female 1966 … 0.33 

16 Female 1955 … 0.33 

17 Male  1967 … 0.2 

18 Female 1956 … 0.5 

19 Female 1956 … 0.5 

20 Male 1978 … 1 

21 Female 1966 … 0.33 

22 Male 1967 … 0.2 

23 Male 1971 … 1 
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24 Female 1954 … 1 

25 Female 1977 … 1 

26 Male 1944 … 1 

27 Male  1965 … 1 

 

This probability applies under two conditions: (1) the adversary knows someone in the 

real world and is trying to find the record that matches that individual, and (2) the adversary has 

selected a record in the data set and is trying to find the identity of that person in the real world. 

Both of these types of attacks on health data have occurred in practice, and therefore both 

perspectives are important to consider. An example of the former perspective is when an 

adversary gathers information from a newspaper and attempts to find the data subject in the data 

set. An example of the latter attack is when the adversary selects a record in the data set and tries 

to match it with a record in the voter registration list. 

A key observation here is that the probability of re-identification is not based solely on 

the uniques in the data set. For example, record number 18 is not a unique, but it still has quite a 

high probability of re-identification. Therefore, it is recommended that the risk of re-

identification be considered, and managed, for both uniques and nonuniques. 

 

Maximum Risk 

 One way to measure the probability of re-identification for the entire data set is through 

the maximum risk, which corresponds to the maximum probability of re-identification across all 

records. From Table 3, it can be seen that there is a unique record, such that the maximum risk is 

1 for this data set. 

 

Average Risk 
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 The average risk corresponds to the average across all records in the data set. In the 

example of Table 3, this amounts to 0.59. By definition, the average risk for a data set will be no 

greater than the maximum risk for the same data set. 

 

Which Risk Metric to Use 

 As the data set is modified, the risk values may change. For example, consider Table 4, in 

which year of birth has been generalized to decade of birth. The maximum risk is still 1, but the 

average risk has declined to 0.33. The average risk will be more sensitive than the maximum risk 

to modifications to the data. 

 

TABLE 4 The Data Set in Table 1 After Year of Birth Has Been Generalized to Decade of Birth, 

with the Probabilities of Re-identification per Record Added 

 Quasi-identifiers   

Probability of Re-identification ID Sex Decade of Birth  

1 Male 1950-1959 … 0.33 

2 Male 1960-1969 … 0.125 

3 Female 1950-1959 … 0.167 

4 Male 1950-1959 … 0.33 

5 Female 1940-1949 … 1 

6 Female 1970-1979 … 0.33 

7 Female 1960-1969 … 0.33 

8 Female 1980-1989 … 1 

9 Male 1950-1959 … 0.33 

10 Male 1960-1969 … 0.125 

11 Male 1960-1969 … 0.125 

12 Female 1950-1959 … 0.167 

13 Male 1960-1969 … 0.125 

14 Male 1960-1969 … 0.125 

15 Female 1960-1969 … 0.33 

16 Female 1950-1959 … 0.167 

17 Male  1960-1969 … 0.125 

18 Female 1950-1959 … 0.167 

19 Female 1950-1959 … 0.167 

20 Male 1970-1979 … 1 

21 Female 1960-1969 … 0.33 

22 Male 1960-1969 … 0.125 
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23 Male 1970-1979 … 0.33 

24 Female 1950-1959 … 0.167 

25 Female 1970-1979 … 0.33 

26 Male 1940-1949 … 1 

27 Male  1960-1969 … 0.125 

 

 Since the average risk is no greater than the maximum risk, the latter is generally used 

when a data set is going to be disclosed publicly (El Emam, 2013). This is because a dedicated 

adversary who is launching a demonstration attack against a publicly available data set will 

target the record(s) in the disclosed clinical trial data set with the maximum probability of re-

identification. Therefore, it is prudent to protect against such an adversary by measuring and 

managing maximum risk.  

The average risk, by comparison, is more suitable for nonpublic data disclosures. For 

nonpublic data disclosures, some form of data sharing agreement with prohibitions on re-

identification can be expected. In this case, it can be assumed that any data subject may be 

targeted by the adversary. 

As a general rule, it is undesirable to have unique records in the data set after de-

identification. In the example of Table 1, there are unique records both in the original data set 

and after year of birth has been changed to decade of birth (see Table 4). For example, record 26 

is unique in Table 4. Unique records have a high risk of re-identification. Also, as a general rule, 

it is undesirable to have records with a probability of re-identification equal to 0.5 in the data set.  

With average risk, one can have data sets with an acceptably small average risk but with 

unique records or records in equivalence classes of size 2. To avoid that situation, one can use 

the concept of “strict average risk.” Here, maximum risk is first evaluated to ensure that it is at or 

below 0.33. If that condition is met, average risk is computed. This two-step measure ensures 

that there are no uniques or doubles in the data set. 



   

 

35 
 

In the example data set in Table 4, the strict average risk is 1. This is because the 

maximum risk is 1, so the first condition is not met. However, the data set in Table 5 has a strict 

average risk of 0.33. Therefore, in practice, maximum risk or strict average risk would be used to 

measure re-identification risk. 

 

TABLE 5 The Generalized Data Set with No Uniques or Doubles 

 Quasi-identifiers   

Probability of Re-identification ID Sex   Decade of Birth  

1 Male 1950-1959 … 0.33 

2 Male 1960-1969 … 0.125 

3 Female 1950-1959 … 0.167 

4 Male 1950-1959 … 0.33 

6 Female 1970-1979 … 0.33 

7 Female 1960-1969 … 0.33 

9 Male 1950-1959 … 0.33 

10 Male 1960-1969 … 0.125 

11 Male 1960-1969 … 0.125 

12 Female 1950-1959 … 0.167 

13 Male 1960-1969 … 0.125 

14 Male 1960-1969 … 0.125 

15 Female 1960-1969 … 0.33 

16 Female 1950-1959 … 0.167 

17 Male  1960-1969 … 0.125 

18 Female 1950-1959 … 0.167 

19 Female 1950-1959 … 0.167 

21 Female 1960-1969 … 0.33 

22 Male 1960-1969 … 0.125 

23 Male 1970-1979 … 0.33 

24 Female 1950-1959 … 0.167 

25 Female 1970-1979 … 0.33 

27 Male  1960-1969 … 0.125 

 

Samples and Populations 

 The above examples are based on the premise that an adversary knows who is in the data 

set. Under those conditions, the manner in which the risk metrics have been demonstrated is 

correct. We call this a “closed” data set. There are situations in which this premise holds true. 
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For instance, one such case occurs when the data set covers everyone in the population. A second 

case is when the data collection method itself discloses who is in the data set. Here are several 

examples in which the data collection method makes a data set closed: 

 

 If everyone attending a clinic is screened into a trial, an adversary who knows 

someone who attends the clinic will know that that individual is in the trial database. 

 A study of illicit drug use among youth requires parental consent, which means that 

parents will know if their child is in the study database. 

 The trial participants self-reveal that they are taking part in a particular trial, for 

example, on social networks or on online forums. 

 

If it is not possible to know who is in the data set, the trial data set can be considered to be a 

sample from some population. We call this an “open” data set. Because the data set is a sample, 

there is some uncertainty about whether a person is in the data set or not. This uncertainty can 

reduce the probability of re-identification. 

When the trial data set is treated as a sample, the maximum and average risk need to be 

estimated from the sample data. The reason is that in a sample context, the risk calculations 

depend on the equivalence class size in the population as well. Therefore, the population 

equivalence class sizes need to be estimated for the same records. Estimates are needed because 

in most the cases, the sponsor will not have access to the population data. 

There is a large body of work on these estimators in the disclosure control literature (e.g., 

Dankar et al., 2012; Skinner and Shlomo, 2008). A particularly challenging estimation problem 

is deciding whether a unique record in the sample is also a unique in the population. If a record is 



   

 

37 
 

unique in the sample, it may be because the sampling fraction is so small that all records in the 

sample are uniques. Yet a record may be unique in the sample because it is also unique in the 

population. 

Under these conditions, appropriate estimators need to be used to compute the maximum 

and average risk correctly. In general, when the data set is treated as a sample, the probability of 

re-identification will be no greater than the probability associated with situations in which the 

data set is not treated as a sample (i.e., the adversary knows who is in the data set). 

 

Re-identification Risk of Participants with Rare Diseases 

 It is generally believed that clinical trials conducted on rare diseases will always have a 

high risk of re-identification. It is true that the risk of re-identification will, in general, be higher 

than that for nonrare diseases. However, it is not necessarily too high. If the data set is open with 

a small sampling fraction and one is using (strict) average risk, the risk of re-identification may 

be acceptably small. The exact risk value will need to be calculated on the actual data set to 

make that determination. 

 

Taking Context into Account 

 

Determining whether a data set is disclosed to the public or a more restricted group of 

recipients illustrates how context is critical. In the case of the recipient, for instance, it informs us 

which metric is more appropriate. However, this is only one aspect of the context surrounding a 

data set, and a more complete picture can be applied to make more accurate assessments of re-

identification risk. 
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For a public data release, we assume that the adversary will launch a demonstration 

attack, and therefore it is necessary to manage maximum risk. There are no other controls that 

can be put in place. For a nonpublic data, set we consider three types of attacks that cover the 

universe of attacks: deliberate, inadvertent, and breach (El Emam, 2013; El Emam and Arbuckle, 

2013). 

A deliberate attack transpires when the adversary deliberately attempts to re-identify 

individuals in the data set. This may be a deliberate decision by the leadership of the data 

recipient (e.g., the QI decides to re-identify individuals in order to link to another data set) or by 

a rogue employee associated with the data recipient. The probability that this type of attack will 

be successful can be computed as follows: 

 

Pr(re-id, attempt) = Pr(re-id | attempt) × Pr(attempt) (1) 

 

where the term Pr(attempt) captures the probability that a deliberate attempt to re-identify the 

data will be made by the data recipient. The actual value for Pr(attempt) will depend on the 

security and privacy controls that the data recipient has in place and the contractual controls that 

are being imposed as part of the data sharing agreement. The second term, Pr(re-id | attempt), 

corresponds to the probability that the attack will be successful in the event that the recipient has 

chosen to commit the attack. This conditional can be measured from the actual data. 

 An inadvertant attack transpires when a data analyst working with the QI (or the QI 

himself/herself) inadvertently re-identifies someone in the data set. For instance, this could occur 

when the recipient is already aware of the identity of someone in the data set, such as a friend; 
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relative; or, more generally, an acquaintance. The probability of successful re-identification in 

this situation can be computed as follows: 

 

Pr(re-id, acquaintance) = Pr(re-id | acquaintance) × 

Pr(acquaintance) 
(2) 

 

There are defensible ways to compute Pr(acquaintance) (El Emam, 2013), which 

evaluates the probability of an analyst knowing someone in the data set. For example, if the trial 

is of a breast cancer treatment, then Pr(acquaintance) is the probability of the analyst knowing 

someone who has breast cancer. The value for Pr(re-id | acquaintance) needs to be computed 

from the data. Box 4 considers the question of whether it is always necessary to be concerned 

about the risk of inadvertent re-identification. 
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BOX 4 

Is It Always Necessary to be Concerned About the Risk of Inadvertent Re-identification? 

 

 In the context of data release through an online portal, an argument can be made that the 

sponsor imposes significant security and privacy controls and requires the QI to sign a contract 

that contains the relevant prohibitions (e.g., a prohibition on re-identification attacks). This 

means that the probability of re-identification under these two conditions is likely to be very 

small (but that should still be confirmed). 

 For inadvertent re-identification, what is the likelihood that an analyst will know 

someone in the data set? If the clinical trial was conducted in Japan and the data analyst at the QI 

is in New York, is there a chance that the QI will know a Japanese participant? The reasonable 

answer is no, in that inadvertent re-identification will be highly unlikely when the plausibility of 

a relationship between the participant and the analyst is negligible. Specifically, this means that 

Pr(acquaintance) will be negligibly small. Does that lead us to the conclusion that the data 

should not be de-identified at all? The answer is no because the Japanese participants will still 

expect that the data about them are de-identified to some extent. The public perception of the 

possibility of disclosing data that have a high risk of re-identification needs to be considered. 

 

A breach will occur if there is a data breach at the QI’s facility. The probability of this 

type of attack being successful is  

 

Pr(re-id, breach) = Pr(re-id | breach) × Pr(breach) (3) 
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where the term Pr(breach) captures the probability that a breach will occur. What should 

Pr(breach) be? Publicly available data about the probability of a breach can be used to determine 

this value; the value of the conditional in this case, Pr(re-id | breach), will be computed from 

these data. Data for 2010 show that 19 percent of health care organizations suffered a data breach 

within the previous year (HIMSS Analytics, 2010); data for 2012 show that this number rose to 

27 percent (HIMSS Analytics, 2012). These organizations were all following the HIPAA 

Security Rule. Note that these figures are averages and may be adjusted to account for variation. 

For a nonpublic data release, then, there are three types of attacks for which the re-

identification risk needs to be measured and managed. The risk metrics are summarized in 

Table 6. The overall probability of re-identification will then be the largest value among the three 

equations. 

 

TABLE 6 Data Risk Metrics  

Data Risk Metric to Use 

Pr(re-id | attempt) Strict average risk 

Pr(re-id | acquaintance) Strict average risk 

Pr(re-id | breach) Strict average risk or maximum risk, depending on the 

assumptions 

 

 

Setting Thresholds: What Is Acceptable Risk? 

 

There are quite a few precedents for what can be considered an acceptable amount of 

risk. These precedents have been in use for many decades, are consistent internationally, and 

have persisted over time as well (El Emam, 2013). It should be noted, however, that the 

precedents set to date have been for assessments of maximum risk. 



   

 

42 
 

In commentary about the de-identification standard in the HIPAA Privacy Rule, HHS 

notes in the Federal Register (Sweeney, 2002) that  

 

the two main sources of disclosure risk for de-identified records about individuals 

are the existence of records with very unique characteristics (e.g., unusual 

occupation or very high salary or age) and the existence of external sources of 

records with matching data elements which can be used to link with the de-

identified information and identify individuals (e.g., voter registration records or 

driver’s license records) … an expert disclosure analysis would also consider the 

probability that an individual who is the target of an attempt at re-identification is 

represented on both files, the probability that the matching variables are recorded 

identically on the two types of records, the probability that the target individual is 

unique in the population for the matching variables, and the degree of confidence 

that a match would correctly identify a unique person. 

 

It is clear that HHS considers unique records to have a high risk of re-identification, but such 

statements also suggest that nonunique records have an acceptably low risk of re-identification. 

Yet uniqueness is not a universal threshold. Historically, data custodians (particularly 

government agencies focused on reporting statistics) have used the “minimum cell size” rule as a 

threshold for deciding whether to de-identify data (Alexander and Jabine, 1978; Cancer Care 

Ontario, 2005; Health Quality Council, 2004a,b; HHS, 2000; Manitoba Center for Health Policy, 

2002; Office of the Information and Privacy Commissioner of British Columbia, 1998; Office of 

the Information and Privacy Commissioner of Ontario, 1994; OMB, 1994; Ontario Ministry of 
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Health and Long-Term Care, 1984; Statistics Canada, 2007). This rule was originally applied to 

counting data in tables (e.g., number of males aged 30-35 living in a certain geographic region). 

The most common minimum cell size in practice is 5, which implies that the maximum 

probability of re-identifying a record is 1/5, or 0.2. Some custodians, such as certain public 

health offices, use a smaller minimum count, such as 3 (CDC and HRSA, 2004; de Waal and 

Willenborg, 1996; NRC, 1993; Office of the Privacy Commissioner of Quebec, 1997; U.S. 

Department of Education, 2003). Others, by contrast, use a larger minimum, such 11 (in the 

United States) (Baier et al., 2012; CMS, 2008, 2011; Erdem and Prada, 2011; HHS, 2008a) and 

20 (in Canada) (El Emam et al., 2011b, 2012). Based on our review of the literature and the 

practices of various statistical agencies, the largest minimum cell size is 25 (El Emam et al., 

2011b). It should be recognized, however, that there is no agreed-upon threshold, even for what 

many people would agree is highly sensitive data. For example, minimal counts of 3 and 5 were 

recommended for HIV/AIDS data (CDC and HRSA, 2004) and abortion data (Statistics Canada, 

2007), respectively. Public data releases have used different cell sizes in different jurisdictions. 

The variability is due, in part, to different tolerances for risk, the sensitivity of data, whether a 

data sharing agreement is in place, and the nature of the data recipient. 

A minimum cell size criterion amounts to a maximum risk value. Yet in some cases, this 

is too stringent a standard or may not be an appropriate reflection of the type of attack. In such a 

case, one can use the average risk, as discussed in the previous section. This makes the review of 

cell size thresholds suitable for both types of risk metrics. 

It is possible to construct a decision framework based on these precedents with five 

“bins” representing five possible thresholds, as shown in Figure 4. At one extreme is data that 

would be considered identifiable when the cell size is smaller than 3. Next to that are data that 
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are de-identified with a minimal cell size of 3. Given that this is the least de-identified data set, 

one could choose to disclose such data sets only to trusted entities where the risks are minimal 

(for example, where a data sharing agreement is in place, and the data recipient has good security 

and privacy practices). At the other end of the spectrum is the minimal cell size of 20. This high 

level of de-identification is appropriate when the data are publicly released, with no restrictions 

on or tracking of what is done with the data and who has accessed them. 

 
FIGURE 4 Commonly used risk thresholds based on the review/references in the text. 

 

If the extreme situations cannot be justified in a particular disclosure, an alternative 

process is needed for choosing one of the intermediate values. In Figure 4, this is a choice 

between a value of 5 and a value of 20. 

The above framework does not preclude the use of other values (for example, a sponsor 

may choose to use a threshold value of 25 observations per cell). However, this framework does 

ground the choices based on precedents of actual data sets. 

 

What Is the Likelihood of Re-identifying Clinical Trial Data Sets? 

 

There has been concern in the health care and privacy communities that the risk of re-

identification in data is quite high and that de-identification is not possible (Ohm, 2010). This 

argument is often supported by examples of a number of publicly known re-identification 

attacks. A systematic review of publicly known re-identification attacks found, however, that 
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when appropriate re-identification standards are used, the risk of re-identification is indeed very 

small (El Emam et al., 2011a).
4
 It was only when no de-identification at all was performed on the 

data or the de-identification applied was not consistent with or based on best practices that data 

sets were re-identified with a high success rate. Therefore, the evidence that exists today suggests 

that using current standards and best practices does provide reasonably strong protections against 

re-identification. 

 

HOW TO MANAGE RE-IDENTIFICATION RISK 

 

Managing re-identification risk means (1) selecting an appropriate risk metric, 

(2) selecting an appropriate threshold, and (3) measuring the risk in the actual clinical trial data 

set that will be disclosed. The choice of a metric is a function of whether the clinical trial data set 

will be released publicly. For public data sets, it is prudent to use maximum risk in measuring 

risk and setting thresholds. For nonpublic data sets, a strong case can be made for using average 

risk (El Emam, 2013; El Emam and Arbuckle, 2013).  

 

How to Choose an Acceptable Threshold 

 

Selecting an acceptable threshold within the range described earlier requires an 

examination of the context of the data themselves. The re-identification risk threshold is 

determined based on factors characterizing the QI and the data themselves (El Emam, 2010). 

These factors have been suggested and have been in use informally by data custodians for at least 

                                                 
4
 Note that this conclusion does not apply to genomic data sets. A discussion of genomic data sets is provided in the 

last section of this paper. 
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the last decade and a half (Jabine, 1993a,b). They cover three dimensions (El Emam et al., 2010), 

as illustrated in Figure 5: 

 

 Mitigating controls. This is the set of security and privacy practices that the QI has 

in place. A recent review identifies a collection of practices used by large data 

custodians and recommended by funding agencies and IRBs for managing sensitive 

health information (El Emam et al., 2009). 

 Invasion of privacy. This entails evaluation of the extent to which a particular 

disclosure would be an invasion of privacy to the participants (a checklist is available 

in El Emam et al. [2009]). There are three considerations: (1) the sensitivity of the 

data (the greater the sensitivity of the data, the greater the invasion of privacy), (2) the 

potential injury to patients from an inappropriate disclosure (the greater the potential 

for injury, the greater the invasion of privacy), and (3) the appropriateness of consent 

for disclosing the data (the less appropriate the consent, the greater the invasion of 

privacy) (see Box 5). 

 Motives and capacity. This dimension compasses the motives and the capacity of the 

QI to re-identify the data, considering such issues as conflicts of interest, the potential 

for financial gain from re-identification, and whether the data recipient has the skills 

and financial capacity to re-identify the data (a checklist is available in El Emam et al. 

[2009]).  

 

 In general, many of these elements can be managed through contracts (e.g., a prohibition 

on re-identification, restrictions on linking the data with other data sets, and disallowing the 
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sharing of the data with other third parties). For example, if the mitigating controls are low, 

which means that the QI has poor security and privacy practices, the re-identification threshold 

should be set at a lower level. This will result in more de-identification being applied. However, 

if the QI has very good security and privacy practices in place, the threshold can be set higher. 

Checklists for evaluating these dimensions, as well as a scoring scheme, are available (El Emam, 

2013). 

 

 

FIGURE 5 Factors to consider when deciding on an acceptable level of re-identification risk. 

SOURCE: Reprinted with permission from El Eman and colleagues (2014). 
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 BOX 5  

Consent and De-identification 

 

 As noted earlier, there is no legislative or regulatory requirement to obtain consent from 

participants to share their de-identified data. There are additional ongoing efforts to ensure that 

consent forms do not create barriers to data sharing (Health Research Authority, 2013).  

 Consideration of consent in this context, then, is only to account for situations in which 

consent has been provided by trial participants or notice has been given to participants. In such 

cases, the sharing of clinical trial data is not considered as invasive to privacy as opposed to 

cases in which consent is not sought. Multiple levels of notice and consent can exist for 

disclosure of de-identified data. These are as follows, in increasing order of invasion of privacy: 

 

 Participants may have consented for the disclosure of personal health data from the 

trial for the purpose of secondary analysis. This may be a specific or broad consent 

for secondary analysis. That the sponsor is trying to de-identify the data reflects extra 

caution and privacy-protective behavior on the part of the sponsor. 

 Participants may have consented to the disclosure of only de-identified data for 

secondary analysis. This may be specific or broad secondary analysis. 

 The sponsor does not have express consent for sharing the data, but is consulting with 

representatives of the trial participants (e.g., patient advocacy groups) and the trial 

sites to address any sensitivities and to determine the best way to notify participants 

that their data will be shared. 

 The sponsor does not have express consent and is not planning any consultations or 
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notice. 

 

From a risk management perspective, the first option above is the least invasive of participant 

privacy, while the last is the most invasive. The practical consequence is that the acceptable 

threshold (or the definition of “very small risk”) will be lower under the most invasive scenario. 

 

 If the sponsor is disclosing the data through an online portal, the sponsor has control of 

many, but not all, of the mitigating controls. This provides additional assurances to the sponsor 

that a certain subset of controls will be implemented to the sponsor’s satisfaction. 

 

Once a threshold has been determined, the actual probability of re-identification is 

measured in the data set. If the probability is higher than the threshold, transformations of the 

data need to be performed. Otherwise, the data can be declared to have a very small risk of re-

identification. 

The implication here is that the amount of data transformation needed will be a function 

of these other contextual factors. For example, if the QI has good security and privacy practices 

in place, the threshold chosen will be higher, which means that the data will be subjected to less 

de-identification. 

The security and privacy practices of the QI can be manipulated through contracts. The 

contract signed by the QI can impose a certain list of practices that must be in place, which are 

the basis for determining the threshold. Therefore, they must be in place by the QI to justify the 

level of transformation performed on the data. 
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This approach is consistent with the limited data set (LDS) method for sharing data under 

HIPAA. However, this method does not ensure that the risk of re-identification is very small, and 

therefore the data will still be considered personal health information. 

For public data releases, there are no contracts and no expectation that any mitigating 

controls will be in place. In that case, the lowest probability thresholds (or highest cell size 

thresholds) are used. 

 

Methods for Transforming the Data 

 

There are a number ways to transform a data set to reduce the probability of re-

identification to a value below the threshold. Many algorithms for this purpose have been 

proposed by the computer science and statistics communities. They vary in quality and 

performance. Ideally, algorithms adopted for clinical trial data sets should minimize the 

modifications to the data while ensuring that the measured probability is below the threshold.  

Four general classes of techniques have worked well in practice: 

 

 Generalization. This is when the value of a field is modified to a more general value. 

For example, a date of birth can be generalized to a month and year of birth. 

 Suppression. This is when specific values in the clinical trial data set are removed 

from the data set (i.e., induced missingness). For example, a value in a record that 

makes it an outlier may be suppressed. 
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 Randomization. This denotes adding noise to a field. The noise can come from a 

uniform or other type of distribution. For example, a date may be shifted a week 

forward or backward. 

 Subsampling. This is used to disclose a random subset of the data rather than the full 

data set to the QI. 

 

In practice, a combination of these techniques is applied for any given data disclosure. 

Furthermore, these techniques can be customized to specific field types. For example, 

generalization and suppression can be applied differently to dates and zip codes to maximize the 

data quality for each (El Emam and Arbuckle, 2013). 

The application of these techniques can reduce the risk of re-identification. For example, 

consider the average risk in Table 3, which is 0.59. There is a reduction in average risk to 0.33 

when the year of birth is generalized to decades in Table 4. By suppressing some records, it was 

possible to further reduce the average risk to 0.22 in Table 5. Each transformation progressively 

reduces the risk. 

 

The Use of Identifier Lists 

 

 Thus far we have covered a sufficient number of topics that we can start performing a 

critical appraisal of some commonly used de-identification methods and the extent to which they 

can ensure that the risk of re-identification is very small. We focus on the use of identifier lists. 

The reason is that this approach is quite common, and is being adopted to de-identify clinical 

trial data. 
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The HIPAA Privacy Rule’s Safe Harbor Standard 

 

We first consider the variable list in the HIPAA Privacy Rule Safe Harbor method.  

The Safe Harbor list contains a number of direct identifiers and two quasi-identifiers (i.e., 

dates and zip codes), as summarized earlier in Box 2. It should be evident that in applying a fixed 

list of variables, there is no assurance that all of the quasi-identifiers have been accounted for in 

the risk measurement and the transformation of the data set. For example, other quasi-identifiers, 

such as race, ethnicity, and occupation, may be in the data set, but they will be ignored. Even if 

the probability of re-identification under Safe Harbor is small (Benitez and Malin, 2010), this 

low probability may not carry over with more quasi-identifiers than the two in the original list.  

The empirical analysis that was conducted before the Safe Harbor standard was issued 

assumed that the data set is a random sample from the U.S. population. This assumption may 

have variable validity in real data sets. However, there will be cases when it is definitely not true. 

For example, consider a data set that consists of only the records in Table 1. Now, assume that an 

adversary can find out who is in the data set. This can happen if the data set covers a well-

defined population. If the trial site is known, it can be reasonably assumed that the participants in 

the trial who received treatment at that site live in the same geographic region. If the adversary 

knows that Bob was born in 1965, lives in the town in which the site is situated, and was in the 

trial, the adversary knows that Bob is in the data set, and therefore the 27th record must be Bob. 

This re-identification occurs even though this table meets the requirements of the Safe Harbor 

standard. Members of a data set may be known if their inclusion in the trial is revealing (e.g., a 

trial in a workplace where participants have to wear a visible device, parents who must consent 
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to have their teenage children participate in a study, or adolescents who must miss a few days of 

school to participate in a study). Therefore, this standard can be protective only if the adversary 

cannot know who is in the data set. This will be the case if the data set is a random sample from 

the population. 

If these assumptions are met, the applicability of Safe Harbor to a clinical trial data set 

will be defensible, but only if there are no international participants. If a clinical trial data set 

includes participants from sites outside the United States, the analysis that justifies using this 

standard will not be applicable. For example, there is a difference of two orders of magnitude 

between the median number of individuals living in U.S. zip codes and in Canadian postal codes. 

Therefore, translating the zip code truncation logic in Safe Harbor to Canadian postal codes 

would not be based on defensible evidence. 

Safe Harbor also has some weaknesses that are specific to the two quasi-identifiers that 

are included. 

In some instances, there may be dates in a clinical trial data set that are not really quasi-

identifiers because they do not pass the test highlighted earlier. For example, consider an 

implantable medical device that fires, and each time it does so there is a time and date stamp in 

the data stream. The date of a device’s firing is unlikely to be a quasi-identifier because it is not 

knowable, but it is a date. 

 Safe Harbor states that all three-digit zip codes with fewer than 20,000 inhabitants from 

the 2010 census must be replaced with “000”; otherwise the three-digit zip code may be included 

in the data set. The locations of three-digit zip codes with fewer than 20,000 inhabitants are 

shown in Figure 6. However, in some states there is only one zip code with fewer than 20,000 

inhabitants. For example, if a data set is disclosed with “000” for the residential three-digit zip 
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code for participants in a site in New Hampshire (and it is known that the site is in that state), it 

is reasonable to assume that the participants also live in that state and to infer that their true 

three-digit zip code is 036. The same conclusion can be drawn about “000” three-digit zip codes 

in states such as Alabama, Minnesota, Nebraska, and Nevada. 

 

Other Examples of Identifier Lists  

 

More recent attempts at developing a fixed list of quasi-identifiers to de-identify clinical 

trial data have indicated that including any combination of two quasi-identifiers (from the 

prespecified list) is acceptable (Hrynaszkiewicz et al., 2010). Data sets with more than two 

quasi-identifiers need to go through a more thorough evaluation, such as the risk management 

approach described earlier. However, this approach suffers from the same limitations as the Safe 

Harbor standard with respect to the assumption of two quasi-identifiers always having acceptably 

small risk. An additional limitation is that the authors of the list in Hrynaszkiewicz et al. (2010) 

present no empirical evaluation demonstrating that this approach consistently produces data sets 

with a low risk of re-identification, while at least the Safe Harbor list is based on empirical 

analysis performed by the Census Bureau. 

More important, a number of de-identification standards proposed by sponsors have 

followed similar approaches for sharing clinical trial data from participants globally (see the 

standards at clinicalstudydatarequest.com). Ideally, methods that can provide stronger assurances 

should be used to de-identify such data. 
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FIGURE 6 Inhabited three-digit zip codes with fewer than 20,000 inhabitants from the 2010 

U.S. census. 

 

Putting It All Together 

 

Now that we have gone through the various key elements of the de-identification process, 

we can put them together into a comprehensive data flow. This flow is illustrated in Figure 7. 

The steps in this process are as follows. 
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FIGURE 7 The overall de-identification process. 

SOURCE: Reprinted with permission from El Emam and colleagues (2014). 
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Step 1: Determine direct identifiers in the data set. 

 Determine which fields in the data set are direct identifiers. If the clinical trial data set 

has already been stripped of direct identifiers, this step may not be necessary. 

Step 2: Mask (transform) direct identifiers. 

 Once the direct identifiers have been determined, masking techniques must be applied to 

those direct identifiers. Masking techniques include the following: (1) removal of the direct 

identifiers, (2) replacement of the direct identifiers with random values, or (3) replacement of the 

direct identifiers with pseudonyms. Once masking has been completed there is virtually no risk 

of re-identification from direct identifiers. If the database has already been stripped of direct 

identifiers, this step may not be necessary. 

Step 3: Perform threat modeling. 

 Threat modeling consists of two activities: (1) identification of the plausible adversaries 

and what information they may be able to access, and (2) determination of the quasi-identifiers in 

the data set.  

Step 4: Determine minimal acceptable data utility. 

 It is important to determine in advance the minimal relevant data based on the quasi-

identifiers. This is essentially an examination of what fields are considered most appropriate 

given the purpose of the use or disclosure. This step concludes with the imposition of practical 

limits on how some data may be de-identified and the analyses that may need to be performed 

later on. 



   

 

58 
 

Step 5: Determine the re-identification risk threshold. 

 This step entails determining what constitutes acceptable risk. As an outcome of the 

process used to define the threshold, the mitigating controls that need to be imposed on the QI, if 

any, become evident.  

Step 6: Import (sample) data from the source database. 

 Importing data from the source database may be a simple or complex exercise, depending 

on the data model of the source data set. This step is included explicitly in the process because it 

can consume significant resources and must be accounted for in any planning for de-

identification. 

Step 7: Evaluate the actual re-identification risk. 

 The actual risk is computed from the data set using the appropriate metric (maximum or 

strict average). To compute risk, a number of parameters need to be set, such as the sampling 

fraction. 

Step 8: Compare the actual risk with the threshold.  

 This step entails comparing the actual risk with the threshold determined in Step 5. 

Step 9: Set parameters and apply data transformations. 

If the measured risk is higher than the threshold, anonymization methods, such as 

generalization, suppression, randomization, and subsampling, are applied to the data. Sometimes 

a solution cannot be found within the specified parameters, and it is necessary to go back and 

reset the parameters. It may also be necessary to modify the threshold and adjust some of the 

assumptions behind the original risk assessment. Alternatively, some of the assumptions about 

acceptable data utility may need to be renegotiated with the data users. 
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Step 10: Perform diagnostics on the solution. 

 If the measured risk is lower than the threshold, diagnostics should be performed on the 

solution. Diagnostics may be objective or subjective. An objective diagnostic will evaluate the 

sensitivity of the solution to violations of assumptions that were made. For example, an 

assumption may be that an adversary might know the diagnosis code of a patient, or if there is 

uncertainty about the sampling fraction of the data set, a sensitivity to that value can be 

performed. A subjective diagnostic will determine whether the utility of the data is sufficiently 

high for the intended purposes of the use or disclosure. 

If the diagnostics are satisfactory, the de-identified data are exported, and a report 

documenting the de-identification is produced. On the other hand, if the diagnostics are not 

satisfactory, the re-identification parameters may need to be modified; the risk threshold 

adjusted; and the original assumptions about minimal, acceptable utility renegotiated with the 

data user. 

Step 11: Export transformed data to external data set. 

 Exporting the de-identified data to the destination database may be a simple or complex 

exercise, depending on the data model of the destination database. This step is included explicitly 

in the process because it can consume significant resources and must be accounted for in any 

planning for de-identification. 

 

ASSESSING THE IMPACT OF DE-IDENTIFICATION ON DATA QUALITY 

 

As noted above, Safe Harbor and similar methods that significantly restrict the precision 

of the fields that can be disclosed can result in a nontrivial reduction in the quality of de-
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identified data. Therefore, in this section, we focus on data quality when statistical methods are 

used to de-identify data. 

The evidence on the impact of de-identification on data utility is mixed. Some studies 

show little impact (Kennickell and Lane, 2006), while others show significant impact (Purdam 

and Elliot, 2007). There is also evidence that data utility will depend on the type of analysis 

performed (Cox and Kim, 2006; Lechner and Pohlmeier, 2004). In general, if de-identification is 

accomplished using precise risk measurement and strong optimization algorithms to transform 

the data, data quality should remain high. 

Ensuring that the analysis results produced after de-identification are similar to the results 

that would be obtained on the original data sets is critical. It would be problematic if a QI 

attempted to replicate the results from a published trial and were unable to do so because of 

extensive distortion caused by the de-identification that was applied. Therefore, the amount of 

distortion must be minimized. 

However, de-identification always introduces some distortion, and there is a trade-off 

between data quality and the amount of de-identification performed to protect privacy. This 

trade-off can be represented as a curve between data utility and privacy protection as illustrated 

in Figure 8. 
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FIGURE 8 The trade-off between privacy and data utility. 

 

Consider, then, that there is a minimal amount of data utility that would be tolerable to 

ensure that the results of the original trial can be replicated to a large extent. On the other hand, 

there is a re-identification probability threshold that cannot be exceeded. As shown in Figure 8, 

this will leave a small range of possible solutions. To ensure that the de-identification solution is 

truly within this narrow operating range, it is necessary to perform a pilot evaluation on one or 

more representative clinical trial data sets, and compare the before and after analysis results 

using exactly the same analytic techniques.  

Obtaining similar results for a de-identified clinical trial data set that is intended for 

public release will be more challenging than disclosing the data set to a QI with strong mitigating 

controls. The reason is that the amount of de-identification will vary, being more in the former 

case. This may limit a sponsor’s ability to disclose data publicly, or there may have to be a strong 

replicability caveat on the public data set. For a nonpublic data set when a QI is known, the 

sponsor may impose a minimal set of mitigating controls through a contract or by providing the 
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data through an online portal to ensure that the de-identification applied to the data set is not 

excessive. 

 

GOVERNANCE 

 

Governance is necessary for the sponsor to manage the risks when disclosing clinical trial 

data, and requires that a set of additional practices be in place. What would be characterized as 

high-maturity sponsors will have a robust governance process in place. 

 

Governance Practices 

 

 Some governance practices are somewhat obvious, such as the need to track all data 

releases; trigger alerts for data use expirations; and ensure that the documentation for the de-

identification for each data release has, in fact, been completed. Other practices are necessary to 

ensure that participant privacy is adequately protected in practice. Elements of governance 

practices are listed in Box 6. 

 

BOX 6 

Elements of Governance Practices 

 

 Developing and maintaining global anonymization documentation 

 Process and tools for tracking all data releases 

 Process and tools for triggering alerts for data use expirations 
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 Ensuring that documentation for the de-identification for each data release is complete 

and indexed 

 On occasion, commissioning controlled re-identification attacks 

 Implementing a QI audit process 

 Ensuring that there is ethics review that covers protections against attribute disclosure 

 

 

Controlled Re-identification 

 

The U.K. ICO has recommended that organizations that disclose data also perform 

controlled re-identification attacks on their disclosed data sets (ICO, 2012). Doing so will allow 

them to obtain independent evidence on how well their de-identification practices are working 

and determine whether there are any potential weaknesses that they need to start addressing. 

Controlled re-identification attacks are commissioned by the sponsor. With limited 

funding, these attacks often use publicly available information to attack databases. If additional 

funding is available, those who conduct these attacks can purchase and use commercial databases 

to re-identify data subjects. 

 

Appropriate Contracts 

 

Additional governance elements become particularly important when a sponsor discloses 

data to a QI under a contract. This contract will document the mitigating controls as part of the 

conditions for receiving the data. The sponsor should then have an audit regime in place to 
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ensure that QIs have indeed put these practices in place. The sponsor may select high-risk QIs 

for audit, select randomly, or a combination of the two. Another approach is to ask QIs to 

conduct third-party audits and report the results back to the sponsor on a regular basis for as long 

as they are using the data set. The purpose of the audit is to ensure that the mitigating controls 

are indeed in place. 

 

Enterprise De-identification Process 

 

At an enterprise level, sponsors need to have an enterprise de-identification process that 

will be applied across all clinical trial data sets. This process includes the appropriate thresholds 

and controls for data releases, as well as templates for data sharing agreements and terms of use 

of data. The global process ensures consistency across all data releases. This process must then 

be enacted for each clinical trial data set, and this may involve some customization to address 

specific characteristics of a given data set. 

The cost of such a process will depend on the size of the sponsor and the heterogeneity of 

its clinical trials and therapeutic areas. However, in the long term such an approach can be 

expected to have a lower total cost since there will be more opportunities for reuse and learning. 

In practice, many sponsors have standard case report forms (CRFs) for a subset of the 

data they collect in their clinical trials. For example, there may be standard CRFs for 

demographics or for standardized measures and patient-reported outcomes. The global process 

can classify the variables in these standard CRFs as direct and quasi-identifiers and articulate the 

techniques that should be used to transform those variables. This will reduce the anonymization 

effort per clinical trial by a nontrivial amount. 
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Protecting Against Attribute Disclosure 

 

At the beginning of this paper, we briefly mentioned attribute disclosure, but did not 

address how to protect against it. Such protections can be implemented as part of governance. 

However, in general, modifying the data to protect against attribute disclosure means reducing 

the plausible inferences that can be drawn from the data. This can be detrimental to the objective 

of learning as much as possible from the data and building generalizable statistical models from 

the data. Furthermore, to protect against attribute disclosure, one must anticipate all inferences 

and make data modifications to impede them, which may not be possible.  

Some inferences may be desirable because they may enhance understanding of the 

treatment benefits or safety of a new drug or device, and some inferences will be stigmatizing to 

the data subjects. One will not want to make modifications to the data that block the former type 

of inferences. 

For nonpublic data releases, it is recommended that there be an ethics review of the 

analysis protocols. As part of the ethics review process, the ethics committee or council will 

examine the potential for stigmatizing attribute disclosure. This is a subjective decision and will 

have to take into account current social norms and participant expectations (see also the 

discussion in El Emam and Arbuckle [2013]). The ethics review may be performed on the 

secondary analysis protocol by the QI’s institutional IRB, or by a separate committee reporting 

to the sponsor or even within the sponsor. Such an approach will maximize data integrity but 

also provide assurance that attribute disclosure is addressed. An internal sponsor ethics review 

council will include a privacy professional, an ethicist, a lay person representing the participants, 
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a person with knowledge of the clinical trials business at the sponsor, and a brand or public 

relations person.  

For public data releases, there is no analysis protocol or a priori approval process, and 

therefore it will be challenging to provide assurances about attribute disclosure. 

 

De-identifying Genomic Data 

 

There have been various proposals to apply the types of generalization and randomization 

strategies discussed in this paper to genomic data, and *omics data more generally (e.g., RNA 

expression or proteomic records) (Li et al., 2012; Lin et al., 2002, 2004; Malin, 2005). However, 

evidence suggests that such methods may not be suitable for the anonymization of biomarkers 

that constitute a large number of dimensions. The main reasons are that they can cause 

significant distortion of long sequences, and the assumptions that need to be made to de-identify 

sequences of patient events (e.g., visits and claims) will not apply to *omic data. At the same 

time, there are nuances that are worth considering. For context, we address concerns around 

genomic data specifically, while noting that similar allusions can be made to other types of data. 

First, it is important to recognize that many of the attacks that have been carried out on 

genomic data require additional information (Malin et al., 2011). In certain cases, for instance, 

the re-identification of genomic data is accomplished through the demographics of the 

corresponding research participant; the associated clinical information (Loukides et al., 2010b); 

or contextual cues associated with the collection and dissemination of the data, such as the set of 

health care providers visited by the participant (Malin and Sweeney, 2004). For example, a 

recently reported re-identification attack on participants in the Personal Genome Project (PGP) 
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was based almost entirely on information derived from publicly accessible profiles—notably 

birth date (or month and year), gender, and geographic indicators of residence (e.g., zip code) 

(Sweeney et al., 2013). Other individuals in the PGP were re-identified based on the fact that 

they uploaded compressed files that incorporated their personal names as file names when 

uncompressed. This attack used the same type of variables that can be protected using the 

techniques described in this paper. Moreover, it has been shown that many of the protection 

strategies discussed in this paper can be tailored to support genome-phenome association 

discovery (e.g., through anonymization of standardized clinical codes [Heatherly et al., 2013; 

Loukides et al., 2010a]).  

This fact is true for attacks that factor genomic data into the attack as well. For instance, 

it was recently shown that an adversary could use publicly available databases that report on Y-

chromosme–surname correlations to ascertain the surname of a genome sequence lacking an 

individual’s name (Haggie, 2013). However, for this attack to be successful, it required 

additional information about the corresponding individual. Specifically, the attacker also needed 

to know the approximate area of residence (e.g., U.S. state) and approximate age of the 

individual. While such information may be permitted within a Safe Harbor de-identification 

framework, a statistical assessment of the potential identifiability of such information would 

indicate that such ancillary information might constitute an unacceptably high rate of re-

identification risk. At the same time, it should be recognized that, even when such information 

was made available, the attack reported in Haggie (2013) was successful 12 percent of the time 

and unsuccessful 5 percent of the time. In other words, there is variability in the chance that such 

attacks will be successful. 
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More direct attacks are, however, plausible. There is evidence that a sequence of 30 to 80 

independent single nucleotide polymorphisms (SNPs) could uniquely identify a single person 

(Lin et al., 2004). Unlike the surname inference attack mentioned above, a direct attack would 

require that the adversary already have identified genotype data for a target individual. Yet 

linking an individual using his or her genome would permit the adversary to learn any additional 

information in the new resource, such as the individual’s health status. Additionally, a recent 

demonstration with data from openSNP and Facebook suggests that in certain instances, the 

genomic status of an individual can be inferred based on the genome sequences of close family 

members (Humbert et al., 2013). 

Beyond direct matching of sequences, there is also a risk of privacy compromise in 

“pooled” data, where only summary statistics are reported. For instance, it has been shown that it 

is possible to determine whether an individual is in a pool of cases or controls for a study by 

assessing the likelihood that the individual’s sequence is “closer” to one group or the other 

(Homer et al., 2008; Jacobs et al., 2009; Wang et al., 2009). Despite such vulnerability, it has 

also been shown that the likelihood of success for this attack becomes lower as the number of 

people in each group increases. In fact, for studies with a reasonable number of participants 

(more than 1,000), it is safe to reveal the summary statistics of all common (not rare) genomic 

regions (Sankararaman et al., 2009). 

However, one of the challenges with genomic data is that it is possible to learn 

phenotypic information directly. When such information can be ascertained with certainty, it can 

then be used in a re-identification attack. For example, predictions (varying in accuracy) of 

height, facial morphology, age, body mass index, approximate skin pigmentation, eye color, and 

diagnosis of cystic fibrosis or Huntington’s chorea from genetic information have been reported 
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(Kayser and de Knijff, 2011; Kohn, 1991; Lowrance and Collins, 2007; Malin and Sweeney, 

2000; Ou et al., 2012; Silventoinen et al., 2003; Wjst, 2010; Zubakov et al., 2010), although it 

should be noted that there have been no full demonstrations of attacks using such inferences. 

Also, because of the errors in some of these predictions (excluding Mendelian disorders that are 

directly dependent on a mutation in a certain portion of the genome), it is not clear that they 

would be sufficiently reliable for re-identification attacks. 

Although traditional generalization and randomization strategies may not provide a 

sufficient balance between utility and privacy for high-dimensional *omics data, a solution to the 

problem may be possible with the assistance of modern cryptography. In particular, secure 

multiparty computation (SMC) corresponds to a set of techniques (and protocols) that allow 

quite sophisticated mathematical and statistical operations to be performed on encrypted data. In 

the process, individual records would never be disclosed to the user of such a resource. This type 

of protection would not prevent inference through summary-level statistics, but it would prevent 

direct attacks on individuals’ records. SMC solutions have been demonstrated that have been 

tailored to support frequency queries (Kantarcioglu et al., 2008), genomic sequence alignment 

(Chen et al., 2012), kinship (and other comparison) tests (Baldi et al., 2011; He et al., 2014) and 

personalized medical risk scores (Ayday et al., 2013a,b). Nonetheless, the application of these 

methods to genetic data is still in the early stages of research, and it may be a few more years 

before some large-scale practical results are seen. 
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