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1. Introduction 
 

Hundreds of Genome-Wide Association Studies (GWAS) in the last decade have 

successfully led to the discovery of over 12,000 genetic variants that are associated with 

a wide range of common diseases and traits (Visscher, et al, 2017). GWAS involve 

analysis of hundreds of thousands to millions of common genetic variants across the 

genome using data from large cohorts of individuals, commonly from case-control studies 

and cohort studies, to identify genetic variants associated with a disease or a trait of 

interest.   The published genetic variant-disease association findings have been 

systematically and expertly curated in the last decade in the NHGRI-EBI GWAS Catalog 

(www.ebi.ac.uk/gwas), which provides a rich, quality-controlled community resource 

widely used by many researchers (MacArthur, et al, 2016). Overall, GWAS have 

represented a sweeping tour de force in human genetics, and paved a road for emerging 

Whole Genome Sequencing studies and biobank studies to advance precision health.  

 

Through the collective efforts of the scientific community, findings of large scale 

GWAS have largely been found to be reproducible and replicable. The ability to reproduce 

data and results is at the heart of science.  In recent years, a high-level concern about 

irreproducible results has been raised by the scientific community (Baker, et al, 2016; 

Fanelli, 2018), which has called for more strategies to enhance rigor and reproducibility 
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in research (Collins and Tabak, 2014; Redish, et al, 2018). These calls were followed by 

a surge of discussions in both the statistical community and the general scientific 

community on improving the practice of statistical significance using p-values (Amrhein 

and Greenland, 2018; Benjamin, et al, 2018; Wasserstein and Lazar, 2016). In view of 

these concerns, the lessons learned from GWAS are particularly valuable to facilitate 

efforts to develop strategies to improve reproducibility and replicability. 

 

Indeed, in the last decade, GWAS have identified replicable common genetic variants 

associated with many common human diseases and traits. Examples of common disease 

genetic discoveries include cardiovascular disease, type 2 diabetes, inflammatory bowel 

disease, COPD, and cancers. Examples of quantitative traits include lipids, BMI, height, 

and lung function measures. 

 

The success of GWAS in reproducing and replicating disease-associated variant 

discoveries is due to multiple factors.  We highlight a few of them in this article.  

Specifically, we will discuss the strategies learned from GWAS on data reproducibility, 

analysis reproducibility, and result replicability.   We emphasize the importance of 

engaging the scientific community in collaboratively developing a culture of 

standardizing data generation, data processing and protocol development, as well as 

standardizing analysis pipelines and software, and making data and resource sharing 

feasible and well-supported. The community involved in these collective efforts includes 

quantitative and domain science researchers, funding agencies, and publishers.  

Several key factors have contributed to the success of reproducibility and 

replicability in GWAS. They include (i)  consistency in data generation and extensive 

quality control steps to ensure reliability of genotype data; (ii) genotype and phenotype 

harmonization;  (iii) a push for large sample sizes through the establishment of large 

international disease consortia; (iv) rigorous study design and standardized statistical 

analysis protocols, including consensus building on controlling for key confounders such 

as genetic ancestry/population stratification, the use of stringent criteria to account for 

multiple testing, and the development of norms for conducting independent replication 

studies and meta-analyzing multiple cohorts; (v) a culture of large-scale international 
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collaboration, and sharing of data, results and tools, empowered by strong infrastructure 

support; (vi) an incentive system, which is created to meet scientific needs and is 

recognized and promoted by funding agencies, journals as well as grant and paper 

reviewers,  for scientists to perform reproducible, replicable and accurate research. 

The successful GWAS model used for data generation and analytic practice along 

with the culture of collaboration and data, results and tool sharing have facilitated the 

development of strategies for enhancing reproducibility and replicability of emerging 

state-of-the-art Whole Genome/Exome Sequencing (WGS/WES) studies and biobank 

studies, such as the two ongoing large national Whole Genome Sequencing programs 

include the Genome Sequencing Program (GSP) of the National Human Genome 

Research Institute  (http://gsp-hg.org/), and the Trans-Omics for Precision Medicine 

Program (TOPMed) of the National Heart, Lung and Blood Institute 

(https://nhlbiwgs.org/). GSP and TOPMed together plan to do whole genome/exome 

sequencing of a total of 300,000-350,000 individuals, with the goal of studying the 

genetic variants and genes associated with many different diseases and traits. In this 

paper, some initial efforts of data reproducibility and analysis reproducibility of GSP and 

TOPMed will be discussed,  

In-depth discussions of issues, challenges, solutions, practices and culture are 

valuable for addressing reproducibility and replicability in emerging large scale precision 

health studies, such as the All of Us Program of the National Institute of Health (NIH) 

(https://allofus.nih.gov/), the rapidly increasing number of biobank studies, as well as 

studies in other disciplines. 

 

2. Data Reproducibility 
 

Research data are a fundamental building block of science. Indeed, data 

reproducibility is a foundation for reproducible and replicable science. GWAS have 

focused on making genotype data reproducible by establishing community standards for 

genotype data, quality control protocols, and collaborative frameworks. GWAS data 

involve genotyping tens of millions of genetic variants across the genome from hundreds 
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of thousands of individuals from many different cohorts in a GWAS study. Genotyping is 

often performed at large genotyping centers, which have developed a tradition of 

collaboration in developing open-access variant calling algorithms and pipelines that have 

been tested and become community standards.  Issues such as batch and center effects 

are commonly investigated and addressed in the variant calling algorithms. Extensive and 

transparent quality control (QC) steps have been developed to ensure the reliability of 

genotyping data.  These standard QC protocols have been widely adopted by the GWAS 

community and are disseminated through training modules, online educational materials, 

short courses, and publications.  

As the field transitions to the Whole Genome Sequencing (WGS) era, the GWAS 

practice of ensuring genotype data reproducibility and accuracy is being advanced in 

ongoing large scale WGS studies of a wide range of diseases and traits across diverse 

populations, such as those of GSP and TOPMed. There is a strong interest in jointly 

analyzing genomes across many cohorts and studies in order to boost power for 

disease/trait mapping, as well as studying population genetics and genome biology.  To 

facilitate genome aggregation across centers and promote reliable joint analysis, five 

major US genome sequencing centers forged a collaboration to jointly develop WGS data 

processing and file format standards by harmonizing upstream data processing steps, 

while allowing for different variant callers (Regier, et al, 2018). These standards are made 

publicly available in Github. They provide guidelines for ongoing and future sequencing 

studies. The genome centers apply center-specific alignment, data processing and 

variant callers to the same testing data sets to demonstrate "functionally equivalent" (FE) 

results. This exercise allows FE results produced by different centers to be used for joint 

variant calling with minimal batch effects, helping lay the foundation for broad data sharing 

and joint analysis in large scale human genetics studies.  

 

Phenotype quality, standardization and harmonization play an equally critical role in 

data and analysis reproducibility and result replicability. Examples of phenotype data 

include disease/trait outcomes, exposures, and treatment information, which are often 

collected from epidemiological studies, Electronic Medical Records (EMRs) and other 

sources. Compared to genotype data, phenotype data from sources such as EMRs are 
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more complex, and their accuracy, harmonization and standard development are more 

challenging.  Substantial efforts have been made by TOPMed on harmonizing 

phenotypes across cohorts. 

 

Recognizing the importance of data standards, the Global Alliance for Genomics and 

Health (GA4GH, https://www.ga4gh.org/) was formed in 2013 as an international 

nonprofit alliance to create frameworks and standards to “drive uptake of standards and 

frameworks for genomic data sharing within the research and healthcare communities.” 

Such an international effort on collaborative framework and data standard building and 

guideline development strengthens reproducibility and harmonization of both genotype 

data and phenotype data, and helps integrate research and medical genomes worldwide, 

while embodying the concept of preproducibility (Stark, 2018), which means “research 

has been described in adequate detail for others to undertake it.”  A similar effort on 

developing data standardization and harmonization is being made by the Global Genomic 

Medicine Collaborative (G2MC, www.g2mc.org), which aims at recognizing and 

harnessing activities related to the global implementation of genomic medicine.   

 
3. Roles of Study Design in Reproducibility and Replicability 

 
Rigorous and  well-documented study design is of critical importance for ensuring 

study validity as well as enhancing reproducibility and replicability. Poorly designed 

studies can cause difficulties in replicating findings in other studies. Researchers need 

to carefully consider the factors that impact data reproducibility and result replicability in 

all dimensions of study design.  In GWAS and WGS studies, examples of these design 

consideration factors include genotype data generation to minimize batch and center 

effects, phenotype data collection to minimize selection bias, as well as inclusion of both 

a discovery phase and a validation phase, and the procurement of large sample sizes 

through large international disease consortia. 

 

For genotype data collection, genotyping and sequencing protocols and sample 

allocation across sequencing centers need to be carefully planned to minimize batch 

and center effects. For example, there is a need to balance the number of cases and 
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the number of controls and the ethnicities of cases and controls between batches and 

centers.  It is considered undesirable practice to sequence mainly cases in one center 

and mainly controls in another center; to sequence mainly Caucasians in one center 

and African Americans in another center; and or to sequence cases using one platform 

and controls using another platform, as these kinds of sample allocation can lead to 

genotyping bias, which may bias analysis results.  Genotyping bias can be reduced by 

joint calling using pooled genotype data from different sequencing center centers 

followed by a carefully developed QC procedure to reduce remaining batch and center 

effects.    

 

For phenotype data, commonly used epidemiological and clinical study designs 

include case-control, cross-sectional, and cohort studies. Sampling schemes of study 

participants needs to be carefully considered in the design phase and taken into 

account in the analysis phase as well.  Selection bias requires particular attention in 

large-scale studies. Indeed, although variance is important, bias plays a more important 

role in studies involving big data. 

 

It is critical to minimize the selection bias at the design phase of a study. For 

example, in GWAS and Whole Genome Sequencing association studies, differential 

population structures between cases and controls can result in bias in association 

analysis. For example, if disease cases use Caucasians in the US, while controls use 

Caucasians from the open-access UK Biobank (Sudlow, et al, 2015), cases and 

controls are likely to differ in ancestry, which will confound association analysis results. 

 

A critical factor that contributes to the success of GWAS discovery is the community 

convention of building both a discovery phase and a replication phase in a GWAS 

study.  Samples from independent studies are used in the replication phase to replicate 

the findings of the variants with the strongest evidence of association.  In addition, a 

stringent genome-wide statistical significance level for meta-analysis of the combined 

data is used to correct for a large number of tests across the genome, e.g., using the 

Bonferroni correction p-value<10-8 for a million genetic variants.    
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One reason the GWAS community has widely adopted this important practice of 

including both the discovery phase and the replication phase in a GWAS study is the 

recognition that common disease-associated genetic variant effects are often weak and 

a large number of hypothesis tests of genetic markers across the genome are likely to 

result in the very top hits to be false positives.  Hence, selection of a set of variants that 

are pushed for the replication phase often uses a less stringent genome-wide 

significance criterion at the discovery phase, in consideration of weak disease/trait-

associated common variant effects and the fact that some null variants can happen to 

be observed for a marginal association attaining genome-wide significance by chance. 

 

Another important design-related factor that contributes to the success of replicability 

of GWAS findings is that GWAS often involves a very large sample size, which is 

achieved by forming large national and international disease/trait-specific GWAS 

consortia.  This tradition of conducting a large scale GWAS study has been developed 

because the common genetic variants associated with diseases/traits often have weak 

effects and large sample sizes are needed to reach a stringent genome-wide significant 

threshold and to detect weak effects.  Candidate gene studies often have small sample 

sizes, use much higher type I error rates, and lack built-in replication studies. These 

limitations of candidate gene studies often result in false positives and difficulties in 

replicating the findings of candidate gene studies. 

 
 

4. Analysis Reproducibility  

 

Data, analysis and result reporting standards, coupled with open-access well 

maintained and easy-to-use analysis software that perform standardized statistical and 

computational analysis in a field, play a critical role in reproducibility and replicability of 

scientific research. In GWAS, these standards and software have not only contributed to 

the success of analysis reproducibility and result replicability, but also facilitated national 

and international collaboration in large GWAS consortia. These standards have been 

collectively developed and widely adopted by the GWAS community. Even though 
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sharing genetic and phenotype data might not always be feasible for all study cohorts,  

with these standardized analysis and commonly used open access software that 

implement these analyses, researchers of different cohorts of a GWAS study are able to 

process data and perform analyses consistently and transparently. They can also share 

cohort-specific analysis summary statistics, which can be easily used for meta-analysis 

in both the discovery phase and the replication phase. The efforts related to standard 

building have paid off in GWAS, and set up a good model for data and analysis 

standard development in emerging Whole Genome Sequencing studies and biobank 

studies. Consistent and rigorous standards of data analysis and result reporting, and 

powerful software  play an instrumental role in clinical trials.   

 

GWAS analysis protocols are pre-specified and standardized. These include the QC 

procedure, statistical models and methods, incorporation of the stringent genome-wide 

significance level, and advance planning of the studies to be used in the discovery 

phase and the replication phase, as well as a meta-analysis plan. Replication studies in 

GWAS are built-in and their inclusion has become a standard practice in the GWAS 

field. Indeed, it is difficult to publish a GWAS paper without replication studies or meta-

analysis in top journals, such as Nature Genetics. It is also difficult to get GWAS grants 

funded without independent replication, as reviewers often have such an expectation.  

The scientific need and the community culture of conducting replication studies or meta-

analysis to ensure result replicability create strong incentives for national and 

international collaboration between researchers and the formation of large consortia. 

This also underlines the importance of the multifaceted efforts by researchers, journals 

and funding agencies to make reproducibility and replicability of scientific research a 

real world practice. 

 

GWAS analysis methods are tested and standardized by the community. They 

include regression analysis using individual variants, careful evaluation of key 

confounders including the genetic ancestry of the samples, and adjustment for 

population structure in regression analysis using principal components, as well as other 

covariates such as age and gender, as well as the use of stringent Bonferroni criteria to 
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adjust for multiple comparison.  All of these are considered to avoid spurious 

associations and biases in estimated effect sizes. GWAS are increasingly performed 

through large meta-analyses that combine statistical evidence from multiple cohorts.   

 

Incorporating domain knowledge in study design and data analysis is also essential 

to enhance replicability of results. For example, disease sub-types play a critical role in 

precision health. Genetic bases of disease sub-types may be different. A lack of 

consideration of disease sub-types in GWAS might result in GWAS results not being 

replicable.  For example, lung cancer has several subtypes, such as adenocarcinoma, 

squamous cell carcinoma, and small cell carcinoma.  Inflammation and immune-related 

genes are mainly associated with the risk of lung squamous cell carcinoma, while not 

much associated with the risk of lung adenocarcinoma. If the studies of a discovery 

phase mainly consist of adenocarcinoma cases while a replication phase consists of 

mainly squamous cell carcinoma cases, the results of the GWAS results from the 

discovery phase are likely not to be replicated. In addition, careful consideration of 

ethnicity is needed in GWAS. Ethnic differences between studies in the discovery phase 

and the replication phase could result in a failure in replicability of findings. In addition, 

different strategies for handling ethnicities in meta-analysis are desirable, such as 

performing ethnicity-specific meta-analysis, and across ethnicity meta-analysis. 

 

5. Data, Resource and Tool Sharing 

 

Some of the key impediments to performing reproducible and replicable research in 

the past included the lack of a culture of data sharing, result sharing, few tools to make 

it easy to share data and results, and limited sharing of open-access software and code 

used for performing analyses in published papers. Data sharing in the GWAS 

community has been a major enabling factor in gene mapping success.  GWAS data 

sharing has become a norm due to the mandates of funding agencies, including the 

National Institute of Health. Systematic and secured data sharing is made feasible and 

convenient through dbGAP (https://www.ncbi.nlm.nih.gov/gap)  that has been built and 

supported by the National Center for Biotechnology Information (NCBI).  Researchers 
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can file an application for accessing the individual level GWAS data collected by the 

studies funded by NIH by following the NIH data security policy. Each application is 

subject to review and approval by the dgGAP. If approved,  the downloaded data need 

to be securely stored by following the NIH guidelines.    NCBI provides technical support 

for data sharing and access through dbGAP.  

 

The NIH Data Commons (https://commonfund.nih.gov/commons) is being developed to 

make broad data sharing possible by the general health science research community 

and meet the community needs as well as standards for being FAIR – Findable, 

Accessible, Interoperable, and Reusable.  The pilot projects of the NIH Data Commons 

Pilot Phase Consortium are developing and testing a cloud-based platform using three 

high profile datasets, including the TOPMed data, where health science investigators 

can store, share and access data and software. These pilot projects will help setting 

policies, processes, and architecture for the NIH Data Commons.  

 

Reproducible and replicable research relies on the availability of open access, easy 

to use, and comprehensive analysis software that implements standardized analysis 

protocols and tools in the field of interest. Such software needs to be well maintained 

and supported and widely adopted by the target research community.  For example, 

Plink (http://zzz.bwh.harvard.edu/plink/) has been widely used by researchers to 

process and analyze GWAS data. It contains comprehensive from-start-to-end analytic 

tools needed for GWAS analysis. It reads genotype data that are generated from 

commonly used genotyping arrays, performs QC, calculates PCs, performs association 

analysis, and displays results with easy vitalization.  

 

To facilitate open access data and result sharing, substantial efforts have also been 

made to extract and curate published replicated GWAS findings. The GWAS Catalog, a 

collaborative effort of the European Bioinformatics Institute (EMBL-EBI) and the 

National Human Genome Research Institute (NHGRI),  provides and maintains a 

consistent and easy-to-use freely available database of published significant 

disease/trait-genetic variant associations. For each curated GWAS study, the 
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association analysis summary statistics for each significant SNP, including regression 

coefficients, standard errors and p-values, are reported for both the discovery phase 

and the replication phase, as well as meta-analysis results. Study sample 

characteristics, such as sample sizes and ethnicities for both the discovery phase and 

the replication phase are also reported.  The Catalog also publishes a regularly updated 

GWAS diagram of SNP-trait associations, mapped onto the human genome by 

chromosomal location and displayed on the human karyotype.  

 

In addition, GWAS result summary statistics, such as effect sizes, their standard 

errors, and  p values of millions of SNPs, of an increasing number of large scale GWAS 

studies of a wide range of diseases and traits, have become rapidly widely available in 

the public domain in the last few years, e.g., see 

https://grasp.nhlbi.nih.gov/FullResults.aspx. The pubic availability of such SNP-level 

analysis result summary statistics has enabled discoveries of novel associations, 

estimation of heritability, quantification of pleiotropy across diseases/traits, construction 

of polygenetic risk prediction scores, and functional analysis of discovered disease-

associated variants, without creating the need to access the original GWAS data. 

 

As we move into the sequencing and precision health era, Whole Genome 

Sequencing (WGS) and Whole Exome Sequencing (WES) data are starting to become 

publicly available. For example, the WGS data of the first 8000 individuals sequenced 

by TOPMed are available in dbGAP and available for the general research community 

to access.  As biobanks have rapidly emerged, large biobank data have also become 

publicly available for research purpose. For example, the UK Biobank (Sudlow, et, al 

2015) has released both GWAS and rich phenotypic data, such as EMRs, life styles, 

imaging, and treatment data on 500,000 individuals to the international research 

community.  

 

6. Discussions 
 
Reproducible and replicable research has become increasingly important for the 

success of scientific discovery, especially in dealing with massive data.  Advancing 
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reproducible and replicable science faces numerous significant challenges. GWAS 

provide the research community with valuable lessons  as the community collectively 

develops strategic plans for advancing reproducible and replicable research in a wide 

range of scientific disciplines. 

 

As demonstrated in GWAS,  multiple components need to be considered to make 

scientific research more reproducible and replicable. They include data reproducibility; 

analysis reproducibility and result replicability. Specifically, first, a rigorous design of a 

study needs to consider the key factors that affect reproducibility and replicability, such 

as batch effects and selection bias;  building both the discovery phase and the replication 

phase,  with a procurement of a large sample size through forming large international 

research consortia.  

 

Second, systematic and transparent data generation and processing pipelines and a 

rigorous statistical analysis protocol, as well as development of field-specific data and 

analysis standards  and collaborative framework, as well as  open access analysis tools 

and software, are pivotal. These include efforts on data generation consistency and 

harmonization; development of standardized QC and data processing pipelines, and 

rigorous standardized statistical analysis that properly addresses the key analytic issues 

in the field, as well stringent statistical inference procedures, such as stringent p-values 

to adjust for multiple comparison and adjustment for key confounders and design-related 

matters. These standards need to be empirically evaluated and tested.  Efforts need to 

be organized for building these data and analysis pipelines and standards, as well as 

ensuring them to be up-to-date and widely followed by the research community.  Open 

access, cohensive and high quality software packages that allow for version control and 

can be hosted in open access development platforms that are easy for repositories, such 

as Github, are critical and need to implement these up-to-date standardized data process 

and statistical analysis protocols. 

 

Third,  mandates for data and result sharing by funding agencies play an important 

role in reproducible and replicable science. These mandates need to be supported by 
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centralized well-maintained research data infrastructure, such as NIH dbGAP and Data 

Commons,  and meet the desired principles and standards, such as FAIR introduced in 

the NIH Data Science Strategic Plans (https://datascience.nih.gov/strategicplan).  Data 

sharing and data security policies and guidelines need to be developed.   

 

Fourth, it is critical to build research incentives and community culture for reproducible 

and replicable research jointly by researchers, funding agencies and journals.  Indeed, 

the scientific community in a discipline needs to be partnered by being engaged in 

collaboratively developing a culture and tradition of standardizing data generation, data 

processing and protocol development, as well as standardizing analysis pipelines and 

software; tailoring these towards the discipline of interest, and making data and resource 

sharing feasible and well-supported. More education for the research community on the 

practices of successful use cases of reproducible and replicable science and their 

benefits  will be desirable.  

 

Finally, to assure a future of sustainable, reproducible, and replicable science, we 

need to increase community efforts to have deeper discussions of issues, culture, 

practices and solutions related to reproducibility and replicability. In addition, strategic 

multi-faceted actions need to be taken to extend the basic principles and strategies that 

have been shown to work in successful use cases, such as GWAS, to other fields of 

research , and tailor them towards individual fields.  The pivotal role of statistics and data 

science in this journey should continue to be emphasized.  Quantitative scientists and 

domain scientists, as well as funding agencies and private sectors,  need to work together 

to  encourage and take actions on data sharing and the adoption of best data and analytic 

practices and available tools. With such joint communicty efforts, we can accelerate open 

reproducible and replicable science and improve the accuracy of scientific discovery. 
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