

×

Board on Mathematical Sciences & Analytics

LIFE CYCLE DECISIONS FOR BIOMEDICAL DATA The Challenge of Forecasting Costs

BOARD ON MATHEMATICAL SCIENCES AND ANALYTICS

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

LIFE CYCLE DECISIONS FOR BIOMEDICAL DATA The Challenge of Forecasting Costs

Forecasting Data Costs for Storage Providers

Life Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs

> Presented to the Public August 27, 2020

Forecasting Data Costs for Researchers, Funders, and Storage Providers August 2020 weekly webinar series, 12-1pm ET

Recordings available at https://vimeo.com/showcase/7444639

August 13: Forecasting Data Costs for Researchers
August 20: Forecasting Data Costs for Funding Institutions
August 27: Forecasting Data Costs for Storage Providers

This webinar series is sponsored by the National Library of Medicine of the National Institutes of Health

Watch webinar videos and learn more about BMSA at <u>https://biomed-data-costs.eventbrite.com/</u>

Forecasting Data Costs for Storage Providers

Ilkay Altintas (Moderator) University of California San Diego Clifford Lynch Coalition for Networked Information Brian Nosek Center for Open Science Alex Ropelewski Pittsburgh Supercomputing Center

Forecasting Data Costs for Storage Providers

Executive director, Coalition for Networked Information

Forecasting Data Costs: Highlights for Storage Providers

Clifford Lynch

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Summary of my talk

Very brief overview of report & work (see video of earlier committee webinar for a more detailed review)

Closer look at Underlying Framework Foundation of Three Data States Comments on State Transitions: "Dehydration" and "Hydration" Comments on Selected Sources of Uncertainty ("Disrupters") Thoughts on Strategies for State 2 Resources and Terminologies

Context

- Biomedical researchers generate, collect, and store research data in increasing volumes and dimension.
- Sustained data access and preservation generate costs that are difficult to predict and allocate responsibility for.
- The biomedical data landscape is diverse and dynamic, requiring unique and innovative approaches.

Statement of Task

National Library of Medicine of the National Institutes of Health asked for a *framework for forecasting long-term costs* for preserving, archiving, and accessing biomedical data.

Data Value

- The perceived value of data influences decisions regarding their life cycle.
- Data value does not necessarily correlate with the financial investment made to collect those data.
- The value of a data resource compounds if it sparks connections among diverse users.

Cost Forecasting Framework

- Helps forecaster identify major cost drivers
- Basis for a cost forecast (not a one-size-fits-all analysis tool)
- Will help forecaster identify decisions that impact short- and long-term costs and data value
- The forecaster is encouraged to think beyond the specific data state being developed or managed; about how decisions may affect the costs of data management and access in future data states, the transitions to those states, and the future value of data.
- Use Case: Estimating costs of a new data repository for the BRAIN Initiative

Cost Components of a Biomedical Information Resource

- Labor-direct salaries and benefits
- *IT infrastructure*—computer purchase, upgrade, and replacement; storage servers; networking equipment; software
- *IT services*—installation, operation, and maintenance of IT infrastructure
- *Media*-consumable storage (e.g., tapes, DVDs)
- Licenses and subscriptions—periodic payments for access/use of data, software, services
- Facilities and utilities—space for people and IT infrastructure, utilities (might be incorporated into institutional overhead)

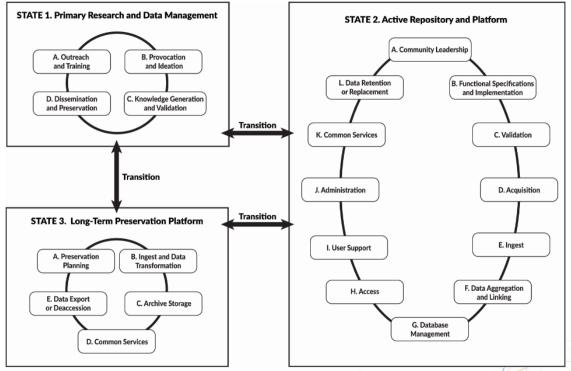
- Outside services—consultants, external auditors, off-site media storage, training
- *Travel*—costs for outreach activities, to convene governing boards, and so on.
- Institutional overhead—indirect costs for administrative and other support (might be allowed in a contract or grant)
- Other "soft" Costs (e.g., time users expend to use the data)

(Box 3.2 in text)

The National Academies of Academies of MEDICINE Cost Forecasting Framework: Cost Drivers Data properties that affect the costs of

data access and preservation

- A. Content
- B. Capabilities
- C. Control
- D. External Context
- E. Data Life Cycle
- F. Contributors and Users


- G. Availability
- H. Confidentiality
- I. Maintenance and Operations
- J. Standards, Regulatory, and Governance concerns

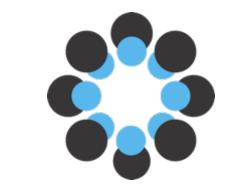
Framework Foundation: Three Data States

State 1: Primary research/data management environment; data are captured and analyzed

State 2: Active repository and platform; data may be acquired, curated, aggregated, accessed, and analyzed

State 3: Long-term preservation platform

Forecasting Data Costs for Storage Providers



Brian Nosek

co-Founder and Executive Director, Center for Open Science; Professor of Psychology, University of Virginia

Open Science Framework

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Open Science Framework

Cost Drivers and Forecasting http://osf.io/

Brian Nosek, Center for Open Science http://cos.io/

OSF: http://osf.io/

Launched 2012, free to use (deposit and access), open-source

Full research life-cycle project and data management and archiving

Private, controlled access, and open: Highly configurable

250,000 registered users "producers"; 250 new users/day

>8,000,000 files; 230 TB

>2,500,000 "consumer" users; 16.3M downloads in 2019, pace for 28M in 2020

How we can use the cost framework

Forecasting

Product Strategy: Sustainability

Product Strategy: Design

Number of OSF Study Registrations

How we can use the cost framework

Forecasting

Product Strategy: Sustainability

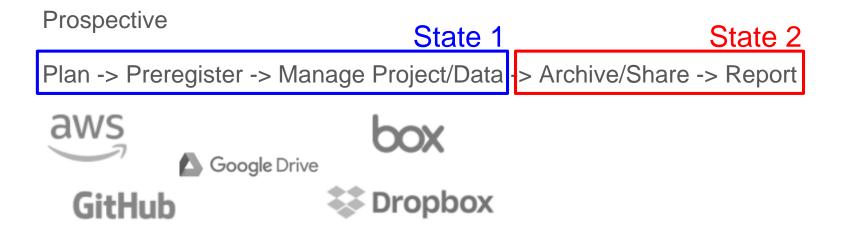
Product Strategy: Design

OSF Use Cases

Prospective

Plan -> Preregister -> Manage Project/Data -> Archive/Share -> Report

Retrospective


Report -> Prepare Data -> Archive/Share

Using framework to inform product strategy

Prospective	State 1	State 2
Plan -> Preregister -> Ma	anage Project/Data >	Archive/Share -> Report

Using framework to inform product strategy

Using framework to inform product strategy

NATIONAL CANCER INSTITUTE Genomic Data Commons

How we can use the cost framework

Forecasting

Product Strategy: Sustainability

Product Strategy: Design

PLANNING

Explore existing research. Preregister analysis plan. Create time-stamped registration.

•

DISCOVERY

Share work. Improve discovery. Aggregate findings.

CONDUCTING

Open data management, collaboration, storage integration

REPORTING

Open data, materials, code. Open access publishing.

CSF**PREPRINTS**

OSF MEETINGS

PLANNING

Explore existing research. Preregister analysis plan. Create time-stamped registration.

OSF REGISTRIES

DISCOVERY

Share work. Improve discovery. Aggregate findings.

CONDUCTING

Open data management, collaboration, storage integration

\$OSF

REPORTING

Open data, materials, code. Open access publishing.

CSF COLLECTIONS

OSFINSTITUTIONS

CSF**PREPRINTS**

OSFCOLLECTIONS

PLANNING

Explore existing research. Preregister analysis plan. ate time-stamped registration.

OSF REGISTRIES

DISCOVERY

Share work. Improve discovery. Aggregate findings.

\$OSF

REPORTING

Open data, materials, code. Open access publishing.

g.

CONDUCTING

Open data management, collaboration, storage integration

CSFINSTITUTIONS 3

These slides: https://osf.io/zsqyp/

OSFMEETINGS

CSF**PREPRINTS**

OSF MEETINGS

PLANNING

fore existing research. Egister analysis plan. Time-stamped registration.

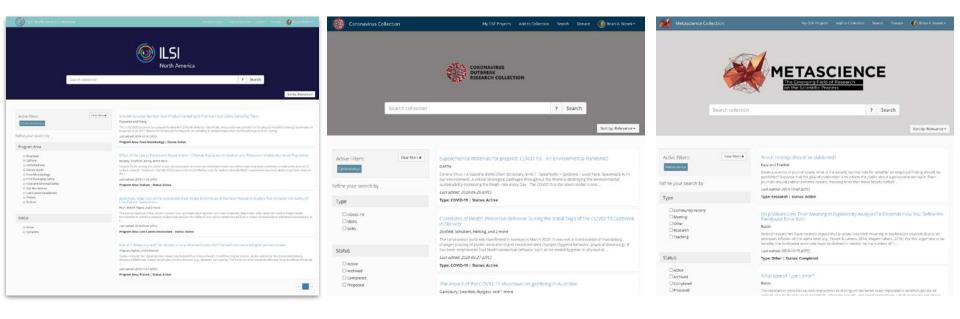
OSF REGISTRIES

DISCOVERY

Share work. Improve discovery. Aggregate findings.

CONDUCTING

Open data management, collaboration, storage integration


REPORTINC

Open data, materials, Open access publishin.

COSF COLLECTIONS

OSFINSTITUTIONS 3

Custom Collections and Repositories on OSF

/end

OSF is State 1 management and State 2 repository

State 1

Can receive direct input from data acquisition tools (Open Sesame)

Interacts with active analysis pipelines (osfr package; JASP Stats)

Collaborative teams do data management work on OSF (Privately or openly)

Integrations with live data environments (Dropbox, Drive, Box, GitHub, etc.)

Registration of research and data management plans prior to data acquisition

State 2

Archiving and sharing data, protocols, code

Interfaces/Collections for aggregating content

Custom curation/moderation processes

Metadata and FAIR standards

Open and Controlled Access

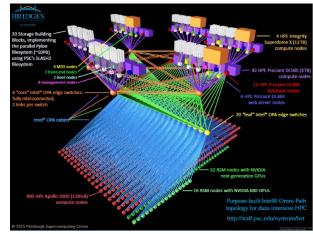
Integrations with state 2 repositories

Forecasting Data Costs for Storage Providers

Director, Biomedical Applications Group, Pittsburgh Supercomputing Center; PI and Operations Director, Brain Image Library

The Brain Image Library: an NIH BRAIN Data Repository

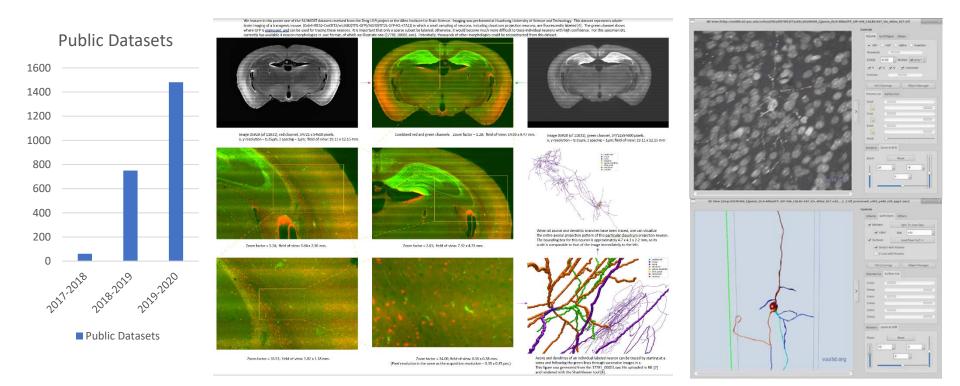
Alex Ropelewski


The National Academies of SCIENCES • ENGINEERING • MEDICINE

The Brain Image Library

Mission: National public resource enabling researchers to deposit, analyze, mine, share and interact with microscopy datasets of the brain.

Scope:


- Permanent repository for high-quality brain microscopy datasets
 - Whole brain images of mouse, rat, other mammals and model organisms
 - Targeted experiments Including connectivity between cells and spatial transcriptomics (*FISH)
 - Historical collections
- Provide HPC computing capability local to the data for presubmission data processing and post-submission exploration
 - Enclave access to pre-release data
 - Research access to restricted-access, secured data
- Provide user access and support

Benninger et. al.2020. Cyberinfrastructure of a Multi-Petabyte Microscopy Resource for Neuroscience Research. (PEARC '20). https://doi.org/10.1145/3311790.3396653

Data Characteristics

Lifecyle

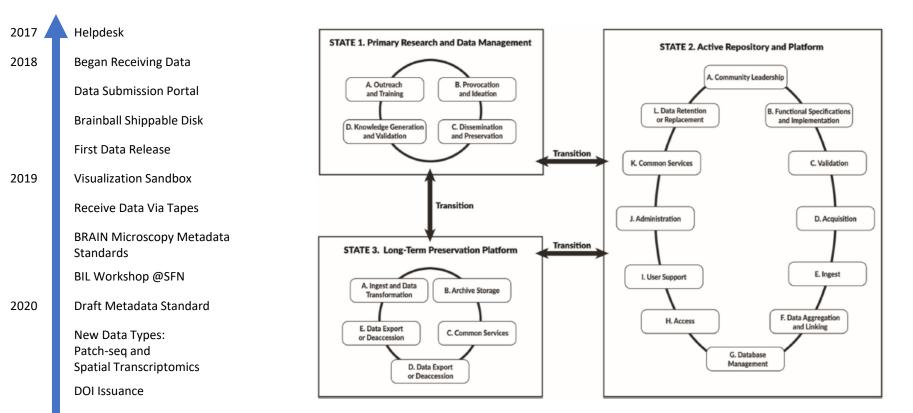


Figure S1: Life Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs (2020) doi: 10.17226/25639

Carnegie Mellon University

Cost Drivers

Content	Now	Future
Size	٠	٠
Complexity/Diversity	٠	٠
Metadata	٠	٠
Depth vs Breadth	٠	٠
Processing/Fidelity	٠	٠
Replaceability	٠	٠

Capabilities	Now	Future
User Annotation	٠	•
Persistent Identifiers	•	•
Citation	٠	•
Search Capabilities	٠	٠
Data Linking/Merging	٠	٠
Use Tracking	٠	•
Analysis/Visualizatio n	٠	•

Control	Now	Future
Content Control	•	٠
Quality Control	•	٠
Access Control	•	٠
Platform Control	•	•

External Content	Now	Future
Resource Replication	٠	•
External Information Dependencies	٠	•
Distinctiveness	•	•
Content	Now	Future

Size	•	•
Complexity/Diversity	•	•
Metadata	•	•
Depth vs Breadth	•	•
Processing/Fidelity	•	•
Replaceability	•	•

Contributors	Now	Future
Contributor Base	•	٠
User Base	•	٠
Training/Support	•	٠
Outreach	•	•

Now	Future
•	٠
٠	٠
٠	٠
•	٠
	Now • •

Confidentiality	Now	Future
Confidentiality	٠	٠
Ownership	٠	٠
Security	٠	•

Maintenance	Now	Future
Integrity Check	•	٠
Data Transfer	•	٠
Risk Management	•	٠
System Reporting	٠	•
Billing	•	•

Standards	Now	Future
Applicable Standards	•	•
Regulatory/Legislativ e Environment	•	•
Governance	٠	٠
External Consultation	٠	•

Modified from Appendix E: Life Cycle Decisions for Biomedical Data: The Challenge of Forecasting Costs (2020) doi: 10.17226/25639

Carnegie Mellon University

University of Pittsburgh

Thank You!

Contact us at: bil-support@psc.edu

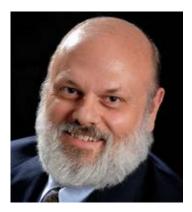
Marcel Bruchez (PI) Greg Fisher (Microscope)

Alexander Ropelewski (Contact PI)

Kathy Benninger (Networking) Greg Hood (Image Analysis+ HPC) Derek Simmel (Systems+Data) Arthur Wetzel (Image Analysis) Luke Tuite (User Support+Web)

Simon Watkins (PI) Alan Watson (Microscope)

This project is supported by the National Institute Of Mental Health of the National Institute of Health under Award Number R24MH114683. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Forecasting Data Costs for Storage Providers

Please submit questions using the Q&A button in the zoom menu.

Ilkay Altintas (Moderator) University of California San Diego

Clifford Lynch Coalition for Networked Information

Brian Nosek Center for Open Science Alex Ropelewski Pittsburgh Supercomputing Center

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Forecasting Data Costs for Researchers, Funders, and Storage Providers August 2020 weekly webinar series, 12-1pm ET

Recordings available at https://vimeo.com/showcase/7444639

August 13: Forecasting Data Costs for Researchers
August 20: Forecasting Data Costs for Funding Institutions
August 27: Forecasting Data Costs for Storage Providers

This webinar series is sponsored by the National Library of Medicine of the National Institutes of Health

Watch webinar videos and learn more about BMSA at <u>https://biomed-data-costs.eventbrite.com/</u>