Errata

NOTE: For errata and software updates please visit https://nap.nationalacademies.org/catalog/25806 and click on the Resources tab.

> The following updates were made to Nutrient Requirements of Dairy Cattle: Eighth Revised Edition.

Page 74, After the sentence "The CCC was 0.52 and 0.50 for the fit and cross-validation, respectively." the following clarifying text was added:

Because Equation 6-3 has an intercept (i.e., 101), the maximum predicted MCP is equal to RDP supply. Research is needed to improve estimation of MCP for heifers and dry cows, which have much lower intakes of RDP than lactating cows.

Page 106, Equation 7-2, the negative sign before 0.22 in MatBW ${ }^{-0.22}$ was deleted to read:

$$
\mathrm{Ca}, \mathrm{~g} / \mathrm{d}=\left(\left(9.83 \times \mathbf{M a t B}^{0.22}\right) \times \mathrm{BW}^{-0.22}\right) \times \mathrm{ADG}
$$

(Equation 7-2)

Page 219, The values presented in Table 10-10 are incorrect because an incorrect coefficient was used to calculate the energy requirements, which made both the energy and protein values erroneous. A revised version of the table is shown below. Incorrect values have been replaced with values in boldface font.

TABLE 10-10 Daily Energy and Protein Requirements of Weaned Large- or Small-Breed Calves Fed Only Solid Feeds

BW (kg)	ADG (g/d)	$\mathrm{DMI}^{a}(\mathrm{~kg} / \mathrm{d})$	ME (Mcal/d)	NEm (Mcal/d)	MP (g/d)	CP (g/d)	CP (\% of DMI)
55	400	1.465	4.394	1.734	174.3	249.0	17.0
	600	1.768	5.305	1.734	227.9	325.6	18.4
	800	2.083	6.248	1.734	281.6	402.3	19.3
65	400	1.607	4.820	1.966	183.1	261.6	16.3
	600	1.921	5.763	1.966	237.7	339.6	17.7
	800	2.246	6.739	1.966	292.5	417.9	18.6
75	400	1.742	5.226	2.188	191.5	273.6	15.7
	600	2.066	6.197	2.188	247.2	353.1	17.1
	800	2.401	7.202	2.188	303.0	432.9	18.0
85	600	2.204	6.612	2.404	251.2	358.8	16.3
	800	2.548	7.643	2.404	306.5	437.9	17.2
	1,000	2.900	8.700	2.404	362.0	517.1	17.8
95	600	2.337	7.010	2.613	259.4	370.5	15.9
	800	2.688	8.065	2.613	315.5	450.7	16.8
	1,000	3.049	9.146	2.613	371.7	531.0	17.4
105	600	2.465	7.394	2.817	267.3	381.9	15.5
	800	2.824	8.471	2.817	324.2	463.1	16.4
	1,000	3.192	9.575	2.817	381.2	544.6	17.1
	1,200	3.567	10.701	2.817	438.4	626.3	17.6
115	600	2.589	7.766	3.015	275.1	393.0	15.2
	800	2.954	8.863	3.015	332.8	475.4	16.1
	1,000	3.329	9.988	3.015	390.6	558.0	16.8
	1,200	3.712	11.136	3.015	448.6	640.8	17.3
125	600	2.709	8.128	3.210	282.7	403.9	14.9
	800	3.081	9.244	3.210	341.2	487.4	15.8
	1,000	3.463	10.388	3.210	399.8	571.1	16.5
	1,200	3.852	11.556	3.210	458.6	655.1	17.0
	1,400	4.248	12.743	3.210	517.4	739.2	17.4

${ }^{a}$ Assumes starter contains 3.0 Mcal ME/kg DM.

Page 262, Equation 11-12b was corrected.
$\mathrm{ADG}(\mathrm{kg} / \mathrm{d})=\mathrm{RE} /(0.85 \times(1.74+3.08$
$\left.\times(\mathrm{BW} / \mathrm{MatBW})) \times\left(0.0012 \times \mathrm{MatBW}^{0.1}\right)^{1 / 1.1}\right)$
(Old Equation 11-12b)

$$
\begin{gathered}
\mathrm{ADG}(\mathrm{~kg} / \mathrm{d})=[\mathrm{RE} /(0.85 \times(1.74+3.08 \\
\left.\times(\mathrm{BW} / \mathrm{MatBW}))) \times(\mathrm{MatBW} / 700)^{0.1}\right]\left({ }^{1.0 / 1.1}\right)
\end{gathered}
$$

(New Equation 11-12b)
Page 420, Three items in the model that were inadvertently excluded were added after item 38:
39. A vector of target $A A$ and MP post-absorptive use efficiencies (Eff; range of $\mathbf{0}$ to $\mathbf{1}$ for each)
40. A switch denoting the effects of an under-developed rumen in a milk-fed calf on diet digestibility (RumDevDisc_Clf = 0 for developed and 1 for under-developed)
41. A switch denoting the use of non-milk based protein sources in milk replacers (NonMilkCP_ClfLiq $=0$ for all milk proteins and 1 for use of other protein sources)

Page 421, At the top part of Equation 20-4, $+79.3 \times$ An_Age $e_{\text {DryFdStart }} / 7$ was changed to $+\mathbf{7 3 . 3} \times A n_{_}$Age $e_{\text {DryFdStart }} / 7$

At the bottom part of Equation 20-4, $+9.51 \times A n _B W-130.4$ was changed to $\mathbf{+ 9 . 9 5} \times A n _B W-130.4$

Page 423, In three places in Equation 20-22, $N D F$ was replaced with ForNDF

$$
\begin{aligned}
\text { Dt_DMIn_Lact } 2 \quad & 12.0-0.107 \\
& \times D g / d \\
& \times \frac{D t_{-} \text {_ADF } N D F+8.17}{D t_{-} N D F}+0.0253 \\
& \times F o r N D F 48 _N D F-0.328 \\
& \times\left(D t _A D F / D t_{-} N D F-0.602\right) \\
& \times\left(F o r N D F 48 _N D F-48.3\right) \\
& +0.225 \times \text { Milk_Prod }_{\text {Target }}+0.00390 \\
& \times(\text { ForNDF48_NDF }-48.3) \\
& \times\left(\text { Milk_Prod }_{\text {Target }}-33.1\right)
\end{aligned}
$$

(Old Equation 20-22)

$$
\begin{aligned}
& \text { Dt_DMIn_Lact2 } \\
& \begin{aligned}
\mathrm{kg} / \mathrm{d}= & 12.0-0.107 \\
& \times D t_{-} f N D F+8.17
\end{aligned} \\
& \times \frac{D t_{-} A D F}{D t_{-} N D F}+0.0253 \\
& \times \text { ForNDF48_ForNDF }-0.328 \\
& \times\left(D t _A D F / D t _N D F-0.602\right) \\
& \times(\text { ForNDF48_ForNDF-48.3) } \\
& +0.225 \times \text { Milk_Prod }_{\text {Target }}+0.00390 \\
& \times(\text { ForNDF48_ForNDF - 48.3) } \\
& \times\left(\text { Milk_Prod }_{\text {Target }}-33.1\right)
\end{aligned}
$$

(New Equation 20-22)

Page 424, The section heading Dietary Nutrient Concentrations and Intake Feed Nutrients was changed to Dietary Nutrient Concentrations and Intake of Feed Nutrients

Page 428, Clarifying text was added after the sentence ending with " 0.824 g of TP/g of CP." to read:

Microbial N flow is converted to CP and true protein (TP) flows (g / d) using static stoichiometric coefficients of 6.25 g of CP / g of N and 0.824 g of TP / g of CP. Maximum microbial CP was set at RDP intake.

Text referring to Table 6-5 " $(\mathrm{g} / 100 \mathrm{~g}$; Table 6-5 in Chapter 6)" was changed to " $(\mathrm{g} / 100 \mathrm{~g}$; Table 6-2 in Chapter 6)"

Page 432, Equation 20-136 (top part under Value): An_TPIn - Fe_CPout was changed to An_TPIn $\boldsymbol{F e}$ _CPout $+\boldsymbol{F e}$ _CPend

Equation 20-138, Top part (under Criteria column): An_StatePhs = "Calf' was changed to An_StatePhs = "Calf" \& $A n_{-} C P I n_{c l f L i q}>0$

Top part (under Value column): + Fe_INfCP was deleted
Bottom part (under Value column): $+F e_{-} E n d C P$ was replaced with $+\boldsymbol{F e}$ _CPend

Page 433, The sentence "where $D t_{-}$CPIn was 95 percent digested for liquid feeds and 25 percent digested for dry feeds fed to calves." was revised to read:
where Dt_CPIn was 95 percent digested for liquid feeds and 75 percent digested for dry feeds fed to calves.

Below Equation 20-139, the sentence "where $F e _E n d C P$ (kg/d) was predicted as described in Chapter 6:" was deleted.

Equation 20-140 was corrected.
(Old Equation 20-140)

$$
F e _C P e n d=F e _C P e n d _L i q F d+F e _C P e n d _D r y F d ~ k g / d
$$

(New Equation 20-140)

Below Equation 20-140, the sentence " $F e _E n d C P$ was arbitrarily assigned to $A n_{-} R D P$ and $A n_{-} R D P$ to provide an approximation of the contributions of each to endogenous secretions" was revised to read:
$\boldsymbol{F e} _\boldsymbol{C P e n d}$ was arbitrarily assigned to An_RDP and An_RDP to provide an approximation of the contributions of each to endogenous secretions.

Equation 20-141 and Equation 20-142: $F e_{-} E n d C P$ (at the right side of the equation) was replaced with $\boldsymbol{F e} _$CPend

Page 434, The phrase "except for liquid feeds" was deleted from the sentence "All ingredients in the concentrate feed category except for liquid feeds use a digestibility of 81 percent regardless of the library entry when An_StatePhys is set to calf." and was revised to read:

All ingredients in the concentrate feed category use a digestibility of 81 percent regardless of the library entry when An_StatePhys is set to calf.

$$
\begin{aligned}
& \begin{array}{c}
\text { Fe_CPend_LiqFd } \\
k g / d
\end{array}= \\
& \left\{\begin{array}{c|c}
\text { Criteria } & \text { Equation } \\
\hline \text { NonMilkCP_ClfLiq }=0 & 0.0119 \times \text { Dt_DMIn }_{\text {LiqFd }} \\
\text { NonMilkCP_ClfLiq }=1 & 0.0344 \times \text { Dt_DMIn }_{\text {LiqFd }}
\end{array}\right. \\
& \begin{array}{c}
\text { Fe_CPend_DryFd } \\
\mathrm{kg} / \mathrm{d}
\end{array}= \\
& \left\{\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
F e _E n d C P \\
k g / d
\end{array}=\left(12.0+0.12 \times A n _N D F\right) \\
& \text { (Dt_DMIn + InfRum_DMIn } \\
& \times \frac{+ \text { InfSI_DMIn })}{1,000}
\end{aligned}
$$

Below Equation 20-161d, the word "of" was deleted from the sentence "However, only total FA digestibility information is output because of biohydrogenation is not modeled" to read:

However, only total FA digestibility information is output because biohydrogenation is not modeled.

Page 435, For clarity the word "nutrient" was inserted in the sentence "GE supply (Mcal/d) and dietary concentration (Mcal/kg) of GE are calculated from total intakes and the heats of combustion for each nutrient (see Table 20-9)" to read:

GE supply (Mcal/d) and dietary concentration (Mcal/kg) of GE are calculated from total nutrient intakes and the heats of combustion for each nutrient (see Table 20-9):

Page 439, Equation 20-207 in the parentheses " 1 -" was deleted after (and " -1 " was added before).

Page 441, A sentence that clarifies the limits of the equation was added after the sentence "and $A b s_{-} I l e _g$ and $A b s_{_} M e t _g$ represented absorbed Ile and Met (g/d), respectively." to read:
and $A b s_{-} I l e _g$ and $A b s_{-} M e t_{-} g$ represented absorbed Ile and Met (g/d), respectively. An_LactDay was capped at a maximum of $\mathbf{3 7 5} \mathbf{d}$ reflecting the general range of the data used for derivation of the equation.

For clarity, a sentence was added in the paragraph right below Equation 20-216 to read:
where $M l k _N P$ and $M l k _$Fat were as predicted above $(\mathrm{kg} / \mathrm{d})$; $A n_{_}$LactDay and $A n_{_} B W$ were centered to the mean of 137 days and 612 kg , respectively; and An_Parity was represented as a continuous variable reflecting the animal state or the pen average with 1 for primiparous animals and 2 for multiparous animals. Maximum An_LactDay was set at 375 d . The predicted volume of milk produced represents the base breed of Holstein.

Page 445, Equation 20-255: An error in the equation was fixed. On the left side of the equation, CPgain_ was replaced with NPgain_

$$
\begin{aligned}
& \begin{aligned}
\text { NPgain_FrmGain }= & \left(0.201-0.081 \times \frac{A n_{-} B W}{A n_{-} B W_{\text {Mature }}}\right) \\
k g / \mathrm{kg} & \times 0.85 \times 0.86
\end{aligned} \\
&
\end{aligned}
$$

(Equation 20-255)

Equation 20-256: Errors in the equation were fixed. On the left side of the equation CPgain_ was replaced with NPgain_ and on the right side of the equation $=0.068$ was changed to $=\mathbf{0 . 0 6 8} \times \mathbf{0 . 8 6}$ to reflect what is in the text.

Equation 20-258: Corrections were made on the right side of the equation. The variable $F r m N P_{-}$was changed to NPgain_ and RsrvNP_ was changed to NPgain_

$$
\begin{aligned}
\text { Body_NPGain }= & \text { NPgain_FrmGain } \times \text { Frm_Gain } \\
\text { kg/d } & + \text { NPgain_RsrvGain } \times \text { Rsrv_Gain }
\end{aligned}
$$

(Equation 20-258)

Page 446, For accuracy and clarity, the sentence below Equation 20-265 "The conversion of ME to NEL for support of maintenance, growth, and lactation $\left(K m _M E _N E\right.$, $K g_{-} M E _N E$, and $K l l_{-} M E _N E$, Mcal/Mcal) is equal and defined as" was revised to read:

The conversion of ME to NEL for support of maintenance and lactation (Km_ME_NE and $K l_{-} M E _N E$, Mcal/Mcal) were set to 0.66 . The efficiency of conversion of ME to RE for frame gain $\left(K f_{-} M E _R E\right)$ was defined as

Equation 20-266 was corrected.

$$
\left(\begin{array}{l}
K m_{M E N E L} \\
K g_{M E-N E L} \\
K l_{M E _N E L}
\end{array}\right)=
$$

Mcal/Mcal

(Old Equation 20-266)
$K f_{\text {ME_RE }}$
Mcal/Mcal $=$

Criteria	Value
An_StatePhys = "Calf"	
$\begin{aligned} & \text { An_BW>0.16 } \\ & \times A n _B W_{\text {Mature }} \end{aligned}$	0.63
Parity >0 \&Mlk_Prod >0	0.66
$\begin{aligned} & \text { Parity }>0 \\ & \& M l k _P r o d=0 \end{aligned}$	0.66

(New Equation 20-266)
The sentence below Equation 20-266 "The overall efficiencies of conversion of ME to RE were calculated as the product of the $K g_{M E _N E L}$ and $K g_{N E L_{-} R E}$ efficiencies:" was revised to read:

The efficiency of conversion of ME to RE in support of reserve gains ($K r_{-} M E _R E$) was:

Equation 20-267 the right side of the equation was corrected.

$$
\begin{gathered}
K g_{M E _R E} \\
\text { Mcal/Mcal }
\end{gathered}=K g_{\text {ME_NEL } \times K g_{\text {NEL_RE }}=}
$$

$\left\{\begin{array}{c|c}\text { Criteria } & \text { Value } \\ \hline A n_{-} B W \leq 0.16 \times A n_{-} B W & \text { Variable } \\ \hdashline \text { An_BW }>0.16 \times A_{1} n_{-} B W_{\text {Mature }} & 0.56 \\ \hline \text { Parity }>0 \& A n_{-} \text {MilkProd }>0 & 0.74 \\ \hdashline \text { Parity }>0 \& A n_{-} \text {MilkProd }=0 & 0.59\end{array}\right.$
(Old Equation 20-267)
$K r_{M E _R E}$
Mcal/Mcal $=$

$\left\{\right.$| Criteria | Value |
| :--- | :---: |
| $\begin{array}{l}\text { An_BW }>0.16 \times \text { An_BW } \\ \text { Mature }\end{array}$ | $\mathbf{0 . 6 0}$ |
| and An_MilkProd $=\mathbf{0}$ | |$]$.

(New Equation 20-267)

For clarity, above Equation 20-268 text was added before the sentence "ME required for NE gain (An_MEgain, Mcal/d) is calculated as" to read:

The overall conversion efficiency for ME to RE is thus the weighted average of $K f_{-}+M E_{-} R E$ and $K r_{-} M E _R E$. ME required for NE gain (An_MEgain, Mcal/d) is calculated as

Equation 20-268 was corrected.

$$
\begin{gathered}
\text { Body_MEuse } \\
\text { Mcal/d }
\end{gathered}=\frac{A n_{_} \text {NEGain }}{K g_{M E _R E}}
$$

(Old Equation 20-268)

Body_MEuse
Mcal/d

$$
=A n_{-} N E G a i n_{R s r v} / K r_{-} M E _R E
$$

$$
+\frac{{A n_{-} N E G a i n}_{F r m}}{K f_{M E _R E}}
$$

(New Equation 20-268)

Equation 20-269: An error in the equation was fixed. On the right side of the equation the numerator was changed from An_NEgain to An_NEgain $\boldsymbol{F r m}_{\text {Frm }}+$ An_NEgain $_{\text {Rsrv }}$.

Equation 20-271 was corrected.

$\begin{gathered} K g_{M P_{-} N P} \\ g / g \end{gathered}=$	
Criteria	Value
An_StatePhys $=$ Calf	$\begin{aligned} & 0.70-0.532 \times \\ & \left(A n _B W / A n_{-} B W _ \text {mature }\right) \\ & \times \text { Body_NP_CP } \end{aligned}$
$\begin{aligned} & \text { An_Parity }=0 \text { and } \\ & \text { An_BW_empty/ } \\ & \text { An_BW } W_{\text {mature_empty }} \end{aligned}$	$\begin{aligned} & 0.64-0.3 \times \\ & \left.A n_{-} E B W y / A n_{-} E B W_{\text {mature }}\right) \\ & \times \text { Body_NP_CP } \end{aligned}$
An_Parity >0	0.60

(Old Equation 20-271)

$$
\begin{gathered}
K g_{M P_{-} N P} \\
g / g
\end{gathered}=
$$

Criteria	Value
An_StatePhys $=$ Calf	$\begin{aligned} & 0.70-0.532 \times \\ & \left(A n _B W / A n _B W _ \text {mature }\right) \\ & \times \mathbf{0 . 8 6} \end{aligned}$
$\begin{aligned} & \text { An_Parity }=0 \text { and } \\ & \text { An_BW_empty/ } \\ & \text { An_B } W_{\text {mature_empty }}>\mathbf{0 . 1 2} \end{aligned}$	$\begin{aligned} & 0.64-0.3 \times \\ & \left.A n_{-} E B W / A n_{-} E B W_{\text {mature }}\right) \\ & \times \mathbf{0 . 8 6} \end{aligned}$
An_Parity >0	Trg_MP_NP $\times 0.86$

(New Equation 20-271)

Page 447, Equation 20-272: Erroneous values were corrected. Under the Value column, 0.072 was changed to $\mathbf{0 . 0 7 6 9}$ and 0.082 was changed to $\mathbf{0 . 0 9 7}$.

$$
\begin{gathered}
A n_{-} N E m U s e_{N S} \\
\text { Mcal/d }
\end{gathered}=
$$

$\left\{\begin{array}{l|l}\text { Criteria } & \text { Value } \\ \hline \text { Calves : Dt_DMIn } \text { LiquidFeed }>0 & \mathbf{0 . 0 7 6 9} \times A n_{-} E B W^{0.75} \\ \text { Calves: Dt_DMIn } \text { LiquidFeed }=0 & \mathbf{0 . 0 9 7} \times A n_{-} B W^{0.75} \\ \text { Heifers : Dt_DMIn } \\ =0 \& \text { Maritk }=0 & 0.10 \times A n_{-} B W^{0.75} \\ \text { Cows : Parity }>0 & 0.10 \times A n_{-} B W_{N P r_{-} 3}{ }^{0.75}\end{array}\right.$
(Equation 20-272)

Page 448, Equation 20-282 was corrected.

$$
K m_{M E _N E}
$$

Mcal/Mcal ${ }^{-}$

Criteria	Value
$A n_{-} B W \leq 100$	$\begin{aligned} & \text { Km }_{\text {ME_NE }(C l f L i q)} \\ & \times \frac{{A n_{-} D M I n_{L i q}}^{A n_{_} D M I n}}{+K_{M E _N E(C l f D r y)}} \\ & \times \frac{A n_{-} D M I n_{\text {ClfLiq }}}{A n_{-} D M I n} \end{aligned}$
$\begin{aligned} & \text { An_StatePhys } \neq " \text { Calf" } \\ & \& A n _ \text {Parity }=0 \end{aligned}$	0.63
An_Parity >0	0.66

(Old Equation 20-282)

$$
\begin{gathered}
K m_{M E _N E} \\
\text { Mcal/Mcal }
\end{gathered}=
$$

Criteria	Value
$\begin{aligned} & \hline \text { An_StatePhys }=\text { "Calf" and } \\ & \text { An_ME } \text { ClfDry }>0 \text { and } \\ & \text { Dt_DMIn_ClfLiq }=0 \end{aligned}$	Km_NE
An_StatePhys = "Calf" and Dt_DMIn_ClfLiq = 0	0.69
$\begin{aligned} & \text { An_StatePhys }=\text { "Calf" } \\ & \& \text { An_Parity }=0 \end{aligned}$	0.63
An_Parity >0	0.66

(New Equation 20-282)

Page 449, Equation 20-295 was corrected.

$$
\begin{aligned}
& U r_{-} \text {NPend_g } \\
& \quad g / d
\end{aligned}=U r_{-} N e n d_{-} g \times 6.25
$$

(Old Equation 20-295)

(New Equation 20-295)

Equation 20-298 on the right side of the equation in the numerator $U r_{-} N D _g$ was changed to $\boldsymbol{U r} _$EAAend $_g$.

The sentence below Equation 20-299 "NP loss as fecal endogenous ($\mathrm{Fe} _$NPend, g/d; also referred to as metabolic fecal) is defined from dietary NDF concentrations and DMIn as" was changed to:

NP loss as fecal endogenous ($\mathbf{F e} _$Nend, \mathbf{g} / \mathbf{d}; and $F e _N P e n d$, g / d; also referred to as metabolic fecal) are defined from dietary NDF concentrations and DMIn as

Page 450, Equation 20-307: Under the Value column, _ClfDry $\times 0.93$ was changed to _ClfDry $\times \boldsymbol{K}_{-} \boldsymbol{D} \boldsymbol{E}_{-} \boldsymbol{M E}_{\text {ClfDry }}$.

Text was added to the sentence right below Equation 20307 "where An_DEI n_base = the DE unadjusted for DMIn" to read:
where $A n _D E I \quad n _$base $=$the DE unadjusted for DMIn and $K_{-} D E_{-} M E_{\text {ClfDry }}$ is the efficiency of conversion of DE to ME.

Below this text, a new un-numbered equation was added:

$$
\begin{gathered}
K_{-} D E_{-} M E_{C l f D r y} \\
\mathrm{mcal} / \mathrm{mcal}
\end{gathered}=
$$

$\left\{\right.$| Criteria | Equation |
| :--- | :---: |
| $\begin{array}{l}\text { An_StatePhys }=\text { "Calf" } \\ \text { and Dt_DMIn } \\ \text { ClfLiq }\end{array}>0.015 \times$ An_BW | |$) 0.93$ and RumDevDisc_Clf $=1$

An_StatePhys = "Calf" and RumDevDisc_Clf $=1$

Equation 20-310: An error in a variable under the Value column was fixed. The variable $A n G E I n$ was changed to An_GEIn.

Page 452, For clarity, a revision was made in the sentence right below Equation 20-342 "Output of the macro-and microminerals with predictions for absorption in manure was calculated by difference from dietary intakes" to read:

Manure output of the macro-and microminerals with predictions for absorption was calculated by difference from dietary intakes

Page 454, For clarity, this sentence was added right above Equation 20-363:

The efficiencies of individual absorbed EAA use for export protein plus retained in body protein are calculated for comparison to the target efficiencies listed in Chapter 6.

For clarity, a sentence was added right above Equation 20372 (or right below Equation 20-371):

Calcium required by calves consuming liquid feed is calculated as

Page 469, Additional information about the software was added to the last sentence right before the References section to read:

The model code and scripts to run the five observations are provided at the National Academies Press website (see https://www.nap.edu/catalog/25806) and in the C: \backslash NASEMINASEM-Dairy-8 $\mathbf{\text { lscript }}$ folder after installation of the software.

Page 471, In Table 21-1 the vitamin E values for growing calves and heifer ages $225,350,475$, and 600 days are incorrect due to a mistake in converting pounds to kilograms. A revised section of the table is shown below. Incorrect vitamin E values (56, 62, 68, and 77) have been replaced with the correct values (in boldface font).
TABLE 21-1 Predicted Nutrient Concentrations (DM Basis) Needed to Meet the Nutrient Requirements for Holstein Cattle at Varying Stages of Lactation and Ages of Maturity

Age, days	Growing Calves and Heifers						Dry Cows ${ }^{a}$Days Prepartum		Lactating Cows by Parity (Body Weight) and Days in Milk ${ }^{\text {a }}$						
							Days-in-Milk	First (570 kg)		Mature (700 kg)					
							15	150	20	100	200				
	30	100	225	350	475	600		60-21d1	$<21 \mathrm{~d}$	Milk, kg	33	39	53	55	43
BW, kg	65	120	230	330	420	530	740	740	Fat \%	3.9	3.6	3.7	3.5	3.8	
Growth Rate, kg/d	0.7	0.7	0.9	0.8	0.7	0.9	0.1	0.1	Protein \%	3.1	3.0	2.8	2.8	3.3	
Dry matter intake, kg / d	1.4	3.9	6.6	8.5	9.8	11.0	13.9	12.3		20.8	23.9	25.8	29.4	27.4	
ME, Mcal/kg	3.68	2.26	2.09	1.95	1.92	2.12	1.93	2.25		2.39	2.61	2.58	2.73	2.60	
$\mathrm{NE}_{\mathrm{L}}, \mathrm{Mcal} / \mathrm{kg}$	-	-	-	-	-	-	1.28	1.49		1.58	1.72	1.70	1.80	1.73	
Rumen-degradable protein, \%	-	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Rumen-undegradable protein, \%	-	6.6	4.4	2.6	1.7	2.7	1.9	4.3		6.2	7.0	7.5	7.4	7.5	
Crude protein, \%	21.0	16.6	14.4	12.6	11.7	12.7	11.9	14.3		16.2	16.0	17.5	17.4	17.5	
Metabolizable protein, \%	16.5	9.5	8.1	6.8	6.1	14.0	5.2	6.7		9.8	9.8	10.9	10.2	10.1	
NDF, min \%	-	25-33	25-33	25-33	25-33	25-33	25-33	25-33		25-33	25-33	25-33	25-33	25-33	
Forage NDF, min \%	-	19-25	19-25	19-25	19-25	19-25	19-25	19-25		19-25	19-25	19-25	19-25	19-25	
Starch max, \% (varies)	-	15-20	15-20	15-20	15-20	15-20	15-20	15-20		22-30	22-30	22-30	22-30	22-30	
Macrominerals, \%															
Ca	0.59	0.78	0.58	0.44	0.37	0.39	0.31	0.39		0.57	0.57	0.64	0.60	0.58	
P	0.45	0.32	0.26	0.21	0.18	0.19	0.19	0.21		0.35	0.35	0.39	0.37	0.35	
Mg	0.15	0.14	0.12	0.12	0.12	0.10	0.13	0.14		0.17	0.17	0.18	0.18	0.17	
K	1.00	0.51	0.52	0.54	0.56	0.60	0.62	0.69		1.03	0.97	1.10	1.00	0.99	
Na	0.35	0.17	0.16	0.16	0.15	0.16	0.16	0.17		0.21	0.21	0.23	0.22	0.21	
Cl	0.28	0.14	0.14	0.13	0.13	0.13	0.13	0.14		0.29	0.30	0.34	0.32	0.29	
S	-	0.20	0.20	0.20	0.20	0.20	0.20	0.20		0.20	0.20	0.20	0.20	0.20	
DCAD-S mEq/kg min	-	39	42	45	50	60	66	-100		148	130	157	135	137	
Trace minerals, mg/kg															
Cu	5	16	16	15	15	17	18	19		9	8	10	8	10	
Co	-	0.20	0.20	0.20	0.20	0.20	0.20	0.20		0.20	0.20	0.20	0.20	0.20	
I	0.78	0.69	0.58	0.54	0.53	0.54	0.51	0.54		0.46	0.42	0.47	0.42	0.41	
Fe	90	61	46	32	24	28	13	15		16	16	21	19	16	
Mn	50	49	44	40	38	43	38	43		28	26	31	28	27	
Se	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		0.3	0.3	0.3	0.3	0.3	
Zn	70	47	41	36	34	35	30	32		57	58	66	62	61	
Vitamins, IU/kg															
Vitamin A	5,218	3,390	3,829	4,265	4,698	5,288	5,850	6,630		3,021	2,796	3,687	3,303	3,103	
Vitamin D	1,518	924	1,044	1,163	1,281	1,442	1,595	1,810		1,099	954	1,085	952	1,021	
Vitamin E	86	49	25	28	31	35	85	181		22	19	22	19	20	

Page 472, In Table 21-2 the vitamin E values for growing calves and heifer ages $225,350,475$, and 600 days are incorrect due to a mistake in converting pounds to kilograms. A revised section of the table is shown below. Incorrect vitamin E values (54, 61, 67, and 77) have been replaced with the correct values (in boldface font).
TABLE 21-2 Predicted Nutrient Concentrations (DM Basis) Needed to Meet the Nutrient Requirements for Jersey Cattle at Varying Stages of Lactation and Ages of Maturity

Age, days	Growing Calves and Heifers						Dry Cows ${ }^{a}$		Lactating Cows by Parity (Body Weight) and Days in Milk ${ }^{\text {a }}$						
							Days in Milk	First (425 kg)		Mature (520 kg)					
							Days Prepartum	15	150	20	100	200			
	30	100	225	350	475	600		60-21d1	<21d	Milk, kg	22	27	35	37	31
BW, kg	45	90	175	245	310	400	555	555	Fat \%	4.9	4.9	5.0	4.8	4.8	
Growth Rate, kg/d	0.5	0.6	0.7	0.6	0.7	0.7	0.06	0.06	Protein \%	3.9	3.7	3.5	3.5	3.7	
Dry matter intake, kg / d	1.0	3.0	5.1	6.5	7.4	8.3	10.4	9.4		16.5	19.4	20.5	23.5	21.9	
ME, Mcal/kg	3.69	2.41	2.16	2.02	2.13	2.25	2.04	2.19		2.41	2.72	2.67	2.80	2.68	
NE_{L}, Mcal/kg	-	-	-	-	-	-	1.36	1.44		1.59	1.79	1.76	1.85	1.78	
Rumen-degradable protein, \%	-	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Rumen-undegradable protein, \%	-	7.8	4.4	3.1	3.1	2.9	1.8	3.7		6.8	7.6	8.0	8.0	7.6	
Crude protein, \%	22.9	17.8	14.4	13.1	13.1	12.9	11.8	13.7		16.8	17.6	18	18	17.6	
Metabolizable protein, \%	18.2	10.6	8.2	7.2	6.9	6.6	5.5	6.1		10.2	10.0	11.1	10.5	10.2	
NDF, min \%	-	25-33	25-33	25-33	25-33	25-33	25-33	25-33		25-33	25-33	25-33	25-33	25-33	
Forage NDF, min \%	-	19-25	19-25	19-25	19-25	19-25	19-25	19-25		19-25	19-25	19-25	19-25	19-25	
Starch max, \% (varies)	-	15-20	15-20	15-20	15-20	15-20	15-20	15-20		22-30	22-30	22-30	22-30	22-30	
Macrominerals, \%															
Ca	0.75	0.84	0.58	0.44	0.43	0.39	0.31	0.38		0.56	0.56	0.63	0.60	0.57	
P	0.55	0.34	0.26	0.21	0.20	0.19	0.21	0.23		0.33	0.34	0.37	0.35	0.34	
Mg	0.15	0.14	0.12	0.12	0.12	0.10	0.13	0.14		0.16	0.16	0.17	0.17	0.16	
K	1.20	0.50	0.52	0.53	0.56	0.60	0.62	0.68		0.96	0.89	1.01	0.92	0.93	
Na	0.43	0.17	0.16	0.16	0.16	0.16	0.16	0.17		0.20	0.20	0.21	0.21	0.20	
Cl	0.34	0.14	0.14	0.13	0.13	0.13	0.12	0.14		0.27	0.27	0.31	0.29	0.27	
S	-	0.20	0.20	0.20	0.20	0.20	0.20	0.20		0.20	0.20	0.20	0.20	0.20	
DCAD-S, mEq/kg min	-	39	40	43	50	60	66	-100		133	114	140	119	124	
Trace minerals, mg/kg															
Cu	6	17	15	15	16	17	18	19		9	8	9	8	8	
Co	-	0.20	0.20	0.20	0.20	0.20	0.20	0.20		0.20	0.20	0.20	0.20	0.20	
I	1.08	0.77	0.64	0.61	0.60	0.61	0.58	0.62		0.45	0.41	0.46	0.41	0.41	
Fe	110	68	46	32	32	29	13	15		13	14	17	16	14	
Mn	60	52	44	39	42	44	38	43		25	23	28	25	25	
Se	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		0.3	0.3	0.3	0.3	0.3	
Zn	84	49	41	36	36	35	30	32		53	54	59	56	53	
Vitamins, IU/kg															
Vitamin A	6,084	3,286	3,745	4,162	4,592	5,273	5,850	6,510		2,836	2,405	2,796	2,520	2,616	
Vitamin D	1,770	896	1,021	1,135	1,252	1,438	1,595	1,774		1,031	875	1,017	884	951	
Vitamin E	90	48	25	28	30	35	85	177		21	17	20	18	19	

[^0]Nutrient Requirements of Dairy Cattle: Eighth Revised Edition
The National Academies Press, Washington, DC, 2021
International Standard Book Number-13: 978-0-309-67777-6
International Standard Book Number-10: 0-309-67777-7
Digital Object Identifier: https://doi.org/10.17226/25806

[^0]:

