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Abstract

Ontologies are a form of symbolic logic-based knowledge representation technology in which
relevant content, in the form of entities and their definitions, is represented in computable form.
They are widely used throughout the biomedical sciences, and are starting to be used in the
behavioral sciences. They provide a structured, computable representation of the entities and
interrelationships in a domain of interest that can be used to drive multiple computational
applications in data management and scientific research. Ontologies are represented in logical
languages and are part of the family of semantic technologies — technologies for formally
representing meanings. Recently, ontologies are starting to be used together with variants of
modern machine-learning-based artificial intelligence in order to drive increasingly sophisticated
applications that are able to harness automation of knowledge, learning and inference together. This
paper provides an overview of the formal representation of ontologies in ways that support
automated reasoning with such representations, and the application of such ontologies together
with large-scale sources of data.
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Introduction

All scientific domains accumulate a wealth of knowledge about the entities that are the subject of
investigations and observations within that domain, and the way that such entities are interrelated.
Knowledge must be structured in order to be exchanged and interpreted. As technology advances,
larger and larger collections of more and more different types of data are being amassed, stored,
analyzed, interpreted, exchanged and integrated. The proper management of such datasets requires
that the meaning of the data be clear. At the same time, volumes of scientific research outputs —
primarily in the form of written natural language reports including embedded data tables — are
increasing exponentially as the scientific research enterprise accelerates on all fronts. Organizing and
integrating the findings from these reports also requires computational support, ideally structured
around the very same entities as are mentioned in the underlying data on which reports are based,
thereby strengthening the chain of accountability and transparency through all discovery stages,
from raw data through analysis and output to reporting.

The development and adoption of standards for the entities that form the subject matter of a given
domain has a long history across scientific disciplines tracing back to early categorization efforts by
ancient philosophers, with the periodic table in chemistry a prominent example from more recent
history that is still used and developed today. Ontologies, while being rooted in historical
developments, have developed as a particularly modern incarnation of a classification system,
arising from the digitalization of scientific research and the concomitant need for data management
(Hastings, 2017) and the analysis of large-scale data resources.

What are ontologies?

There are many answers to the question of what ontologies are (Neuhaus, 2018), but in their
essence ontologies are representational documents that contain formal, standardized descriptions of
types of thing. They build on and extend other types of standardized representation of types of thing
including controlled vocabularies and terminologies, hierarchies and taxonomies, and supplement
them with semantic relationships and logical definitions that support consistency checking, error
detection and automated inferences (Figure 1).
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Figure 1: Ontologies in the wider context of knowledge representation technologies

Ontologies usually cover largely definitional knowledge, that is, invariant aspects of entities (Rector
et al., 2019), as far as possible. Ontologies are one form of computable representation structure



among others, including linguistic resources, databases which store evidence and facts, and
knowledge resources that contain types of knowledge other than descriptions, such as knowledge
about associations, rules or causal connections. One of the benefits of ontologies is that they provide
an index of unambiguous identifiers for the entities that they define which can be used to uniquely
and unambiguously refer to the same types of entity in other formalisms as well, even those which
capture other sorts of knowledge, and thereby an ontology serves as a hub allowing different sorts
of knowledge to be integrated semantically, that is, integrated by virtue of being about the same
thing — a powerful capability in the typical modern data-rich research context.

What do ontologies contain?

Ontologies consist of several basic elements. The fundamental unit of structure in an ontology is an
entity, corresponding to the sorts of things that are the subjects of scientific investigations. These
usually reflect general types of thing —i.e. capturing repeatable features of the world such as are
usually the subject of scientific investigation — rather than specific, unique, individual things.
Examples of entities include human being, smoking, emotion, income, policy and so on. Entities
corresponding to general types of thing may be referred to as classes, while entities corresponding
to specific individuals may be referred to as instances.

Organized around the structural units of the entities, ontologies also contain a wealth of metadata
(Figure 2). The representation of an entity in an ontology is associated with a name, a definition that
should specify as far as possible unambiguously the nature of the entity being represented (Michie,
West and Hastings, 2019), an identifier, and other relevant metadata including synonyms and
examples of usage. Identifiers are unique for each entity and are usually scoped within a particular
namespace, to which the ontology belongs. For example, the Behaviour Change Intervention
Ontology has namespace BCIO and identifiers which take the form BCIO:xxxxxx where xxxxxxx is a
unique number.
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unique identifier:
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Other defined relationship types and associated
axioms capture additional semantic information

Figure 2: A schematic illustration of an ontology class hierarchy indicating class-level associated metadata.



It is considered best practice for identifiers to be semantics-free (i.e. not to contain the class name
or definition) for two reasons: 1) to support annotations in multiple language contexts so as to
provide global reach and accessibility, and 2) in order to promote stability even as scientific
knowledge and the accompanying ontology representation evolve. Ontology providers must commit
to maintaining identifiers for the long term, so that if they are used in annotations or other
application contexts the user can still rely on them. As an ontology evolves, it is possible for multiple
entries to be merged into one, but in these cases alternate identifiers will still be maintained as
secondary identifiers. When a class is deemed to no longer be needed within the ontology it may be
marked as obsolete, which then indicates that the ID should not be used in further annotations,
although it is preserved for historical reasons.

In addition to metadata, the content in an ontology is interrelated in a hierarchy or taxonomy from
the general to the specific, which allows different sorts of things to be delineated, described and
annotated at multiple different levels of aggregation or grouping. For example, an ontology
hierarchy might capture the following chain of specializations of activity descriptions: behaviour—
physical activity—recreational physical activity—yoga activity. Hierarchy provides organization
which is useful for browsing and querying data, and moreover allows aggregation and clustering at
multiple different levels of generality, allowing data-driven analyses to test for meaning and patterns
in large datasets at multiple different grouping levels.

In addition to the hierarchical classification, which is represented in the formal structure of the
ontology by is a (also known as subClassOf) relations, further types of relationships can be
semantically specified to capture all the different ways that entities can be related. Examples of
semantic relationships commonly used in ontologies across domains include parthood (is part of and
has part), participation (participant of), and dependence (inheres in).

Types of ontologies and their applications

Ontologies in the modern sense originally arose from research in computer science. In particular, in
the early days of research into artificial intelligence, it was recognized that for artificial systems to
act intelligently, they would need to have a representation of aspects of the common-sense
structure of the world so as to reason about and interact with their physical environments. This
encompassed such entities and domains as objects, temporality and causality (McCarthy and Hayes,
1969; Hayes, 1989), and gave rise to the field of ‘knowledge representation’ as a sub-discipline of
computer science. Knowledge representation is still a burgeoning field of research in computational
science, and from it have emerged many different languages and techniques for encoding structured
knowledge in computable form, and algorithms for deriving inferences from such knowledge. While
the objective of representing in computable form everything we know about the common-sense
structure of the world and reasoning with that proved to be a task much more challenging than its
early proponents anticipated (Davis and Marcus, 2015), nevertheless from this field modern
ontologies have inherited many tools and technologies, including the widely used Web Ontology
Language (OWL) (Horrocks et al., 2007) that was designed to support large-scale deployment of
ontologies in the Semantic Web.

In a somewhat parallel development, at the turn of the century, the sequencing of the human
genome and the accompanying technological revolution in the biological sciences gave rise to
massive quantities of new types of data that needed organization, integration, and to be assigned
meaning. For example, in order to be able to consistently integrate data about the biological
processes that genes were involved in across data arising from a range of different types of study on
a range of different types of animal, a common vocabulary for molecular functions and biological



processes was created — the Gene Ontology, or GO (Ashburner et al., 2000). A wide range of
additional ontologies were developed in quick succession within the biological and biomedical
sciences, to address exploding quantities of data. Important to these ontologies, commonly known
as “bio-ontologies”, was that they contained a comprehensive catalogue of the sorts of entities in
the domain, down to a quite detailed level of description. For example, the Gene Ontology currently
includes 43,878 classes. On the other hand, their logical and semantic structure was often simple —
just using a small number of semantic relationships — and the logical language that was used for
their formalization was for the most part not very expressive.

The ontologies of today have developed from these diverse influences into a thoroughly integrative
technology, and as such they now bring together elements arising from across their wide range of
different disciplines of origin. They can nevertheless be grouped into families or traditions of
practice depending on their approach to capturing content and the different emphasis placed on
their different aspects. Some ontologies are more focused on specifying the broad regularities and
logical structure of entities in a given domain, with a focus on complex logical and structural
formalizations for a few entities rather than catalogue-like classifications of many entities. These
more ‘structurally’ oriented ontologies can be seen as having the objective of driving software
applications that can harness, and need to be aware of, that structure. For example, the emotion
ontology developed in (Berthelon and Sander, 2013) to support a use case in affective computing
contains only 16 classes, with the main purpose of the ontology being to represent the broad
structure of emotions through the relationships between emotion and valence, emotion and
arousal, and the context of emotion. While a selection of emotions are included in the ontology
(e.g., anger, sadness, fear), the purpose is clearly not to comprehensively list types of emotion. On
the other hand, an alternative emotion ontology (Hastings et al., 2011) that was developed to
annotate scientific studies of emotions and related phenomena, contains over 600 classes, amongst
which close to 60 are different types of emotion. Nevertheless, while we may draw a distinction
between these two extremes, most modern ontologies fall somewhere in between.

Within ontologies developed with a scientific purpose, that is, a purpose tied to objectives within
empirical research in a given domain, as opposed to ontologies that are developed with
technological purposes within a particular engineering context, there are some that are aiming to
serve as a single point of reference for knowledge about an aspect of the whole domain — they are
reference ontologies. Historically, the Gene Ontology was one of the first examples of a reference
ontology in the biomedical domain, but subsequently many others have been developed. The OBO
Foundry (Smith et al., 2007) is an organization that arose out of the need to coordinate and
interconnect different reference ontologies covering different aspects of the biomedical domain in
such a way that they could be used together in pipelines and analyses. It provides (a) a portal where
such ontologies can be exchanged, (b) a set of best practices and guidelines for their development,
both procedurally and technically, and (c) a suite of common infrastructural utilities for the
development of ontologies following those guidelines. Important to the principles for Foundry
ontologies is that they don’t overlap — that each ontology covers its own unique portion of an overall
domain in such a way that overlapping content is minimized, which necessitates that when
ontologies do need to cover the same conceptual ground, they coordinate and find a way to re-use
or import the content from one to another. The OBO Library collection® — consisting of ontologies
that aim to follow the Foundry guidelines — currently consists of more than 100 ontologies. We can
furthermore distinguish between ontologies developed for a particular domain (domain ontologies)
and those which are developed to cross domains, for example, the Basic Formal Ontology (Arp,

! Listed at http://www.obofoundry.org/.



Smith and Spear, 2015) that serves as the highest-level classification for many of the Foundry
ontologies, is specifically designed to provide definitions for semantic types that cut across individual
domains, such as the distinction between objects and processes.

In contrast to reference ontologies, ontologies that are developed with more of a focus on a specific
application or purpose are often called application ontologies. Such application ontologies are driven
not by a vision of comprehensively mapping out the content of a certain domain but rather by the
need for supporting a specific use case or software application. In scientific contexts alone there are
several use cases for ontologies that arise from the pervasive needs for data management and
analysis. For example, ontologies can structure the content in databases and ensure common
frameworks for data in support of data exchange. They can be used to annotate data and text in
such a way that allows those data and text to be unambiguously interpreted subsequently. And they
support the development of neat user interfaces through their hierarchies and axioms, which user
interfaces may offer browsing, searching or querying that is enhanced by the ontology. A particularly
interesting application of ontologies to large-scale (“big”) annotated datasets is a form of statistical
analysis known as over- or under-representation analysis. For this, the assumption that the ontology
covers the full scope of the range of values that can be expected in the data is key. The ontology is
then used to explore the distribution of the annotated values to ontology classes — answering the
guestion ‘does the distribution of annotations match what would be expected by chance, given
some additional knowledge about the background distribution of values in this type of data?’ It is
this capability that has been one of the main drivers for the pervasive adoption of the GO and similar
bio-ontologies in data analysis pipelines, because it allows for making sense of huge datasets in
terms by determining the ontology categories that are more, or less, represented in them (Bauer,
2017), as for example we may determine that molecular repair operations are over-represented in
tissues sampled from the brains of people with neurodegenerative disorders as compared to those
of healthy controls.

Nevertheless, to some extent, most modern ontologies strive to support multiple applications at the
same time, and the distinction between reference and application ontologies is therefore not always
clear. This is because it is hard and time consuming to develop ontologies and thus it makes sense if
invested resources are capitalized on to the greatest extent possible. Indeed, far too many
ontologies are developed and then not re-used for one reason or another. Reusability — as measured
in practice through adoption —is one of the criteria that can be considered a metric for the success
of an ontology. Metrics for the success or evaluation of ontologies is the subject of the next section.

Evaluating ontologies

Informally, there are a number of criteria that can be used to evaluate how good, fit for purpose, or
correct an ontology is (Brank, Grobelnik and Mladenic, 2005; Obrst et al., 2007). These reflect
various different dimensions of quality. The first dimension of quality is intrinsic. For example, we
might evaluate if the ontology is clear, concise, and well-organized. The second dimension of quality
relates to the technical implementation. We might ask whether the ontology is logically sound (i.e.
contains no contradictions), technically correct, and even if it is computationally elegant, that is, if it
expresses itself succinctly and making good use of the underlying logical language. The third
dimension of quality relates to the relationship between the ontology itself and the portion of the
world that the ontology is representing. Here, we might ask if the ontology content is correct with
respect to the domain it is aiming to represent — does it capture well the structure of the domain
and the best of scientific knowledge in that area? Or indeed, we might ask to what extent the
ontology is complete with respect to the vocabulary and elements of the domain it aims to cover. A
fourth dimension of quality relates to how the ontology is being developed and the community of



people it aims to serve. Is it being developed following a community-involving process? Is it openly
available? Are its development decisions transparent and well documented? Does it strive to
represent and build consensus on the scientific debates at the frontier of its domain, rather than
representing a singular and particular perspective, and keep up to date as the scientific frontier
advances? Finally, a last dimension of quality relates directly to usability. Here, we can ask whether
the ontology is easy to use, and very practically, whether it is usable in one or more applications in
such a way as to enhance that application.

In practice, there are various different ways to quantify and thereby concretely measure the quality
of an ontology, related to the different intuitive notions of quality that have been described above.
For example, some automated tools exist, such as for example OOPS the Ontology Pitfall Scanner
(Poveda-Villalon, Gomez-Pérez and Suarez-Figueroa, 2014), that can detect and report on technical
and structural infelicities, such as metadata completeness — e.g. whether each class has a unique
label and a definition — logical correctness, e.g. whether the ontology overall contains any
inconsistencies, and structural whether there are many parent classes that contain only one child
class —which would be considered a poor structural feature. Another automated ontology
evaluation tool is OntoKeeper (Amith et al., 2019), which in addition to checking syntactic and
structural veracity, checks a form of use by virtue of the number of links to that ontology within
other ontologies. The widely used ontology software library ROBOT (Jackson et al., 2019) offers a
“report” function which runs a series of quality control tests over the input ontology and generates a
report file based on the results, suitable for use in an automated workflow.

There are also approaches that aim to quantify coverage of an ontology with respect to an
underlying domain vocabulary, often as given by analysis of a corpus of domain-relevant literature.
The community-related aspects of ontology evaluation are the focus of the evaluation efforts of the
OBO Foundry organization mentioned above (Smith et al., 2007), which has an editorial working
group that manually reviews ontologies against criteria such as their openness and community-
involvement in their development. Success of an ontology is also often quantified in simple terms of
the range and extent to which it is used, which could be represented for example by a number of
citations or of posts on a community-wide issue tracker. (By this metric, the Gene Ontology is by far
the most successful ontology.) Some of the above criteria for ontology quality are also criteria that
underlie how successful an ontology will be, for example, is it easy to use? However, other aspects
may drive or preclude wide ontology adoption, including tool support and social and technological
‘readiness' within the community. Ontologies can also be evaluated in use for specific applications,
e.g. the Emotion Ontology was evaluated in use for capturing the self-report of emotions (Hastings
et al., 2014). Here, it is clear that evaluation for one particular type of application does not imply
appropriateness for a different type of application, but of course, evaluation against multiple types
of application provides robust support for the general-purpose quality of the ontology within its
domain. Importantly, ontologies are seldom “finished” — rather, they are living and growing entities
that need to continuously be maintained. Therefore, it is helpful if quality indicators can be applied
and re-applied regularly in order to track progress as the ontology evolves.

Formal Representation and Reasoning with Ontologies

Ontologies are usually represented in computable, logical languages that allow the meanings
encoded in them to be made interpretable by computational systems. As such, ontologies are a
derivation of early efforts to represent and reason with knowledge computationally, which started in
the 1950s and proliferated with the development of rules-based expert systems in the 1970s and



1980s. The knowledge bases that accompanied early expert systems were based on rules of the
form if X, then Y and were applied in contexts such as medical diagnostic support systems, where the
preconditions for the rules would take the form of patient symptoms and laboratory measurements,
and the outputs would be differential diagnoses of diseases and conditions.

While rules-based systems are still in use today, in modern computing systems there are a wide
range of different formal languages available for the representation of knowledge in ontologies,
which reflect different tradeoffs between the desirable objectives of expressivity, which captures
how well the language supports encoding the nuances of formal definitions, and automated
inference capabilities. In general, the more expressive a language is, the more difficult (and slow) the
procedures for automated inference are. Highly expressive logical languages are not decidable in
general, which means that no automated approach exists which is able to guarantee determining all
the inferences from the expressed logical axioms.

Examples of logical languages that are used for ontologies include variants of first-order predicate
logic, such as Common Logic, the Web Ontology Language (OWL), the Open Biomedical Ontologies
(OBO) language widely used by ontologies in the biomedical domain, and simpler representational
formalisms such as JavaScript Object Notation (JSON). The most widely used of these is OWL, largely
due to its adoption as a standard by the W3C for the Semantic Web community, and the wide
availability of supporting tools.

Within logic-based languages such as OWL, statements in ontologies have a definite logical meaning
within a set-based logical theory, and this is what allows automated tools (known as reasoners) to
derive inferences and detect errors in ontologies encoded in these languages.

Classes have instances as members, and logical axioms define constraints on class definitions that
apply to all class members. For example, the statement “yoga is a physical activity” has the logical
meaning that all instances of yoga are also instances of physical activity. This can be expressed as the
logical axiom for all x, if x is an instance of yoga, then x is an instance of physical activity:

Vx: Yoga(x) - PhysicalActivity (x)

The OWL language is built on top of a family of logical languages that are collectively called
Description Logics — in the plural because there are different variants which encompass different
logical statement types, and as a result have reasoning algorithms with different levels of
complexity. These languages specify logical language elements that allow the formal representation
of meanings in the ontology through the definition of axioms. Some of these different ingredients of
logical axioms that are available in the OWL language are explained in Table 1 — quantification,
cardinality, logical connectives and negation, disjointness and class equivalence.

Language Informal meaning Examples in OWL
component Manchester Syntax
Quantification: When specifying relationships between classes, it is intervention has_part

universal (only) or | necessary to specify a constraint on how the relationship = some intervention delivery
existential (some) = should be interpreted: universal quantification (‘only’)

means that for all relationships of that type, the target hydrocarbon has_part
has to belong to the specified class, while existential some hydrogen
quantification (‘some’) means that at least one member hydrocarbon has_part
of the target class must participate in a relationship of some carbon

that type.

hydrocarbon has_part
only (hydrogen or carbon)



Cardinality: exact,
minimum or
maximum
Logical
connectives:
intersection (and)
or union (or)

Negation (not)

Disjointness of
classes
Equivalence of
classes

It is possible to specify the number of relationships with
a given type and target that a class must participate in, or
a minimum or maximum number thereof.

It is possible to build complex expressions by joining
together expression parts using the standard logical
connectives ‘and’, and ‘or’.

In addition to building complex expressions using the
logical connectives, it is possible to compose negations.
It is possible to specify that classes should not share any
members.

It is possible to specify that two classes, or class
expressions, are logically equivalent, and that they must
by definition therefore share all their members. Logical
equivalence is often used to assign logical definitions to
classes (i.e. necessary and sufficient conditions on class
membership), which can be used to automatically infer
class placement in a complex hierarchy.

human has_part exactly 2
leg

vitamin B equivalentTo
(thiamin or riboflavin or
niacin or pantothenic acid
or pyridoxine or folic acid
or vitamin B12)

tailless equivalentTo not
(has_part some fail)
physically active
disjointFrom sedentary
smoker equivalentTo
(person and
participates_in some
smoking activity)

Table 1: A selection of logical constructs from the OWL language. Examples are given in OWL’s human-readable
Manchester syntax (Horridge and Patel-Schneider, 2012).

Like the example axiom given for yoga and physical activity above, each of the axiom examples listed
in Table 1 can be expressed as a logical statement in a fragment of the first-order predicate logic.
With these axioms, logic-based automated ontology reasoners are able to check for errors in an

ontology and derive additional inferences from the knowledge that is captured. For example, if a
class relation is quantified with ‘only’ such as the hydrocarbon example given in the table, which can
be expressed logically as follows:

VxVy: Hydrocarbon(x) A hasPart(x,y) <> Hydrogen(y) vV Carbon(y)

and then if a subclass of hydrocarbon in the ontology has a has_part relation with a target other
than a hydrogen or a carbon (e.g. an oxygen):

Hydrocarbon(a) A hasPart(a,b) A Oxygen(b)

that class will be detected as inconsistent (a contradiction) and flagged as such by the reasoner.

The semantics of logical languages also allow inferences or entailments to be derived automatically
from what is captured. Inferences or entailments are additional expressions that follow by the rules
of logic from what has been explicitly declared. For example, given the axiom captured above that
states that yoga is a subclass of physical activity, if we know that an individual e.g. Bob participates
in an instance of yoga, we can infer that Bob also participates in physical activity. This kind of
inference is very useful in enabling query answering over large knowledge bases. Moreover, from
the axiom that physical activity is disjoint from (share no instances with) being sedentary, we can
potentially derive the additional inference that Bob is not sedentary.

Another type of inference that can be computed using the axioms and the knowledge captured in
the ontology is to automatically compute the classification hierarchy. For example, given an axiom
defining (i.e. specifying an equivalent class expression) organic molecular entities as those molecular
entities that contain carbon, and another axiom stating that hydrocarbons contain carbon, the
reasoner would be able to infer that hydrocarbon should be subsumed beneath organic molecular
entity in the classification hierarchy. This type of inference is particularly beneficial in the
management of larger ontologies, as it reduces the amount of work involved in maintenance of large
and often multiply polyhierarchical classification systems. Logical definitions for class expressions, in



combination with the use of a logical reasoner, can also enable different systems of classification to
be used together with the relative arrangement of their hierarchical expressions being computed
automatically. For example, in (Chepelev et al., 2012) logical definitions for chemical classes were
captured, allowing class definitions from the ChEBI chemical ontology to be used together with class
definitions from the MeSH chemical classification, with the resulting composite hierarchy being
completely automatically computed, effectively enabling these two knowledge bases to be merged,
as illustrated in Figure 3.
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Figure 3: lllustration of logical definition of chemical class features enabling automation of hierarchical arrangement of
classes in a chemical ontology, from (Chepelev et al., 2012). The resulting chemical ontology is computable and can be
mapped directly to the classification hierarchy present in either ChEBI or MeSH, enabling those diverse ontologies to be
automatically merged.

An important distinction about logic-based ontology reasoning when compared to the types of
inferences that are commonly used in traditional database systems is that ontology reasoning, at
least insofar as it is implemented for the OWL ontology language, assumes what is known as the
open world. That means that if an axiom is not captured in the ontology, that does not necessarily
mean it is not true. Rather, it means that it is not known whether it is true or not (unless, of course,
it can be inferred from other axioms that are captured in the ontology). For example, consider an
ontology that describes a class hierarchy of recreational physical activities, and includes classes for
yoga, for jogging, and for swimming. If we have an individual Bob who is participating in an instance
of recreational physical activity, we can nevertheless not infer that it then must be either yoga,
jogging, or swimming. Because the assumption is that the ‘world’ (or that part of the domain that
the ontology represents) is incompletely described, and therefore there might be additional



categories of recreational physical activity that are not yet represented. In order to derive an
inference of this sort, we would need an additional axiom that captured that all physical activities
are either yoga, jogging or swimming. This is sometimes called a covering axiom, or ‘closing the
world’ for a particular part of the domain.

The combination of terminological knowledge with automated deduction, error detection and
logical inference capability creates a powerful platform for enabling knowledge-based applications.
However, ontologies are not a one-size-fits-all solution, as they have several limitations in practice.

Limitations

Ontologies are just one of a wide range of different knowledge representation structures, each of
which has different strengths and weaknesses and is therefore best suited for different purposes
and contexts. Modern enterprise knowledge systems typically use a combination of different
representational structures and inference components, but there are perennial challenges in
interfacing disparate knowledge infrastructures, which presently each such system must address on
an ad-hoc and individual basis.

One of the main limitations of ontologies in practice is that, due to their logical basis, they are good
at representing statements that are either true or false — known as categorical, or invariant (Rector
et al., 2019) — but they cannot elegantly represent knowledge that is vague, statistical or conditional.
The types of expressions that are vague in the relevant sense include, for example, the relationships
between risk factors and diseases (e.g. eating red meat and cancer), or between socioeconomic
status and health outcomes (e.g. poverty and COVID severity). In these examples, there is a
statistically significant association at a population level, but it is not the case that every instance of,
say, a person living in poverty, is going to be associated with a more severe COVID disease course.
Causal models directly represent these types of associative relationships between variables and can
be used together with causal reasoning systems that compute over probabilities. Recently, a causal
modelling extension of the Gene Ontology was introduced (Thomas et al., 2019) for representing
causal knowledge about interacting molecular systems and pathways in combination with the
annotations of the functions and activities of genes that are enabled by the standard ontology.

Various extensions do exist at the language level that attempt to combine probabilistic knowledge of
various sorts with ontologies. For example, what are called fuzzy logics consist of statements that
are not categorical (true or false) but rather are true to some extent, or have vague or probabilistic
boundaries (Costa and Laskey, 2006; Lukasiewicz, 2007; Bobillo and Straccia, 2011). Classes that
derive their meaning from comparison to a dynamic or conditional group (e.g. the shortest person in
the room, which may vary widely) are also not possible to represent well within ontologies. Another
form of knowledge that is not well covered in typical ontologies is what is known as default
knowledge or defeasible knowledge. For example, the statement that all birds can fly may be true in
most cases, and is certainly the case for the exemplar or default examples of what a bird is, but it is
not true for all birds. Penguins and ostriches constitute counter-examples. Extensions to the OWL
language have also been developed for this type of defeasible knowledge representation (Casini et
al., 2015).

Furthermore, despite massive advances in computing technologies and algorithms, there are still
pragmatic limits to ensure the scalability of the reasoning tools. For this reason, higher order logical
statements, non-binary relationships and other complex logical constructs cannot yet be
represented and reasoned with in most of the modern ontology languages. For an example of the
practical implications of this restriction, it can be difficult to adequately capture knowledge about
change over time at the class level, i.e. classes in which the members participate in relationships at



one time and not at another, as including a temporal index for each relationship assertion would
require ternary relations: the statement being expressed is not just of the form x is-related-to y,
which is a binary statement as there are two variables x and y, but rather of the form x is-related-to
y at t, which is a ternary statement, as there are three variables x, y and t. The standard form of the
OWL language does not support relationships with an arity (number of entities related) of higher
than two, although again, there are extensions to address this requirement (e.g. Salguero, Delgado
and Araque, 2009).

In practice, none of the OWL extensions surveyed in this section are in widespread use, and indeed
the largest portion of ontologies in contexts such as the semantic web are still rather inexpressive. It
is clear that the time taken for a reasoner to perform its computations is still a barrier in practice for
many large-scale data-driven use cases, and indeed it is the most lightweight profile (sub-language)
of the OWL language, known as EL, for which there are very rapid, parallel and incremental
reasoning algorithms available (Kazakov, Krétzsch and Simancik, 2012), that is the most widely used
in practice.

Machine Learning with Ontologies

Machine learning is a family of approaches falling within the broader family of artificial intelligence
technologies in which computers ‘learn’ to make complex predictions based on data, facts or text.
The performance of such predictions is then evaluated by comparison of the predictions to the truth
in a dataset for which the expected outcomes are known for a set of inputs.

A range of different approaches exist to enable machines to learn, including some that are logic-
based, some that are based on mathematical equations and some that are based on statistical
approaches and data. However, many of the breakthroughs of modern artificial intelligence
technology in real-world applications, such as for example recognizing people or objects in images,
have been due to what are called ‘deep’ learning artificial neural networks (Figure 4). The
performance breakthroughs of such networks regularly feature in the news — for example, a recent
major breakthrough in the prediction of protein three-dimensional structures from amino acid
sequences was achieved using an architecture based on deep neural networks (Jumper et al., 2021).
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Figure 4: Deep neural network architectures consist of many layers of interconnected nodes.

Deep neural networks contain many layers of interconnected nodes that are each individually able
to integrate inputs and form outputs, that then go on to serve as the inputs to the next layer, each of



which having their own trainable parameters and state. Modern deep neural network architectures
are large and complex structures that allow information to flow and be synthesized in both
directions. Information flows forward from inputs to outputs, as each node in the network accepts
several inputs and provides an output to the nodes in the next layer. However, information also
flows backward in the form of “back-propagation”, i.e. information about the error in the final
prediction, allowing information about how well the network has performed in some training task
where the correct output is known to be used to provide input to the internal parameter settings of
the nodes in a way that improves their performance on subsequent iterations of the training
process. This type of network learns an overall function with a vast number of parameters — each
node and connection in the network having its own parameters — which are typically set during the
training process using a gradient descent optimization algorithm that is optimizing towards the
maximally successful prediction output. For that reason, because there are so many parameters that
have to be set for the network to be able to make good predictions, deep neural networks are only
feasible when there are large quantities of training data available to use for training the internal
state of the network.

Research into deep neural network architectures is ongoing and very prolific. Novel elements are
regularly added to such frameworks and where such elements bring a significant improvement on
the state of the art, those architectures tend to become the more commonly used. For example, just
a few years ago a mechanism was introduced that allowed for a selective across-network attention
state to be maintained at each layer of a deep neural network, in addition to the parameters each
node maintains which synthesize inputs into outputs (Vaswani et al., 2017). Since then, networks
using attention mechanisms have become very widely used and outperform earlier approaches for a
multitude of applications.

As representations of domain knowledge and thereby specifications of the ‘ground truth’ in a
particular domain, ontologies are often part of the input data to machine learning systems. Such
systems typically learn from large quantities of annotated data — that is, data to which labels from a
structured controlled vocabulary have been assigned. Ontologies provide controlled vocabularies
that may be used for the structured annotation of the text and data which are then the inputs to
learning models. In biomedical natural language processing, for example, one of the most frequent
tasks that machine learning is used for is the identification of novel entities of a given type in a
corpus of text (Song et al., 2021) — for example the identification of genes and their relationship to
scientific interests and activities (Serrano Najera, Narganes Carlon and Crowther, 2021) or the
identification of drugs and their interactions (Herrero-Zazo et al., 2015). In most such methods, the
gold standard that is used for training the networks that subsequently make predictions consists of a
corpus of text annotated using the vocabulary from one or more biomedical ontologies — for
example, abstracts of text in which the words or phrases which represent diseases have been tagged
with the semantic concept “disease” and associated with an identifier from a disease ontology. In
the behavioral sciences, a system that is able to make predictions about the effects of interventions
based on synthesis of all the available evidence about behavioral interventions (Michie, Thomas, et
al., 2020) is trained from a corpus of scientific papers annotated using terms drawn from an
extensive ontology for behaviour change interventions (Michie, West, et al., 2020), which specifies
the structure of interventions, their content and their parameters.

However, approaches that make use of annotated text often do not use the semantic content of the
ontologies at all — they do not use the logical axioms, nor the textual definitions, nor (with some
exceptions) even the relationships between entities. Rather, they use ontologies only as controlled
vocabularies which, intuitively, one can view as a “set of buckets” into which content is sorted and



with which content is tagged. This is a shame, because the knowledge encoded in the ontologies has
the potential to substantially enhance the performance of common tasks such as recognizing entities
of a given type or predicting relationships between entities. Approaches which make more
sophisticated use of the content of ontologies require that the ontology content itself be made
amenable to serve as inputs to learning algorithms directly, which requires an appropriate
transformation of the ontology content into a mathematical form.

Semantic Embeddings

Machine learning algorithms operate by finding patterns or regularities in their inputs that are
characteristically associated with the outputs. The inputs to such algorithms need to first be
transformed into a suitable mathematical format for the pattern learning process to work — usually
vectors, or long series of numbers. A significant part of the effort in creating a neural network
architecture to address a given problem is solving the challenge of how to transform the inputs into
a relevant format. One straightforward strategy is to assign a “one hot” encoding for the input
content, that is, having a vector of the same length as the number of different values that the input
can take, and then for a given input instance, specifying ‘1’ if that value is present and ‘0’ otherwise.
The equivalent for natural language is to assign each word a position in a vector, and encoding
sentences based on which words are present in the sentence. Clearly, for the most part such vectors
will be large and information-poor (sparse), since some words will appear only very infrequently,
and the words that appear most frequently will convey the least information. Thus, various more
sophisticated algorithms exist to derive encodings for text and data.

More recent neural network architectures use approaches which are able to determine the best
representation for a given raw input directly by learning from a large set of data, based on inferring
an optimal vector to represent a given portion of the input from the context of the input. Such
trained representations known as embeddings, and have the favorable property that similar words
have similar embeddings, as they are used in similar contexts. In natural language processing, for
example, huge corpora of text are used as the input to learn embeddings for each word by training a
network with the task of predicting each word from its context (the words around it in the corpus).
These learned word embeddings, known as language models, are then available for re-use in other
tasks. An example of a very widely used language model is BERT (Devlin et al., 2019).

To use the semantic content of ontologies to enhance machine learning predictions, the ontology
content itself needs to be encoded or embedded into a suitable form to serve as input to a neural
network. Approaches to embedding ontologies for machine learning can be grouped into three main
categories (Kulmanov et al., 2020). Firstly, graph-based approaches treat ontologies as graphs and
draw from algorithms for embedding graph-like structures into vectors. In these approaches, each
node in the graph is taken to represent a unit of input, and the context for the node is given by the
immediate neighborhood of the graph — the node’s edges, the nodes that it is connected to, their
edges in turn, and so on. Ontologies captured in the OWL language are not inherently graph-
structured, but rather they are structured in the form of axioms with logical meanings. Thus, graph-
based embedding approaches first need to determine a representation of the ontology content as a
graph, for example, by transformation to an RDF graph using the standard RDF semantics for the
OWL language. Thereafter, random walks through the graph structure are often used to generate
the graph-based embeddings, which may be weighted or biased to emphasize certain features over
others. For example, OWL2Vec (Holter et al., no date) is an embedding approach that uses random
walks around class nodes in a graph generated from the ontology to create embeddings, which was
further extended with annotation information (such as labels, synonyms, comments and textual
definitions) in OWL2Vec* (Chen et al., 2020). Secondly, syntactic approaches treat ontology axioms



as text similar to sentences and aim to embed this content in a way that preserves syntactic
regularities (such as frequencies of co-occurrences). Examples of syntactic approaches to embedding
ontologies include OPA2Vec (Smaili, Gao and Hoehndorf, 2019), which first transforms logical axioms
into sentences and then uses a sentence-based embedding approach to create vectors in a similar
way to how natural language texts are processed. Thirdly, there are embedding approaches that aim
to preserve the logical semantics of the content using model-theoretic properties. For example,
these approaches may draw on grounded real-valued logics to convert logical axioms directly into
vectors in such a way that the logical properties can be preserved in vector operations.

Beyond ontologies ‘proper’, there are also many applications of modern graph-based machine
learning approaches to process, extend and learn from what are called ‘knowledge graphs’ —
composites of the simpler, less expressive elements of ontologies, together with large-scale data,
structured into vast semantic networks. Knowledge graphs are the family of technologies that
underlie most modern search engines and recommendation systems, such as those of tech giants
Google, Facebook and Amazon. An important application of machine learning with knowledge
graphs is what is known as “link prediction” or “knowledge completion”, i.e. predicting new
relationships between entities that are in the graph but not yet related.

Machine learning with semantic information arising from ontologies has been applied to several
challenging knowledge integration and synthesis tasks in the biomedical domain, including the
prediction of associations between drugs and their target proteins (Alshahrani et al., 2017), to
interpret and visualize the phenotypic diversity associated with genomic variation in mice (Konopka,
Vestito and Smedley, 2021), to predict the associations of genes with diseases (Nunes, Sousa and
Pesquita, 2021), and in the behavioral sciences to train a system to make personalized exercise
recommendations (Lv et al., 2018). Although such approaches are relatively recent, there are already
good indications that such methods outperform their purely data- or corpus-based predecessors.

Limitations

Machine learning approaches in general suffer from a number of known limitations (Pearl, 2018;
Marcus, 2020). They are known to susceptible to easily being misled, a phenomenon that is called
‘brittleness’, for example, in which certain small alterations of the input sequence can lead to
completely different output predictions. They lack explainability, that is, they do not give
explanations or justifications for their predictions and therefore may be difficult to trust. They are
very data- and compute-resource intensive, requiring far, far more data to learn from than typical
humans would need to learn similar things, and leading to concerns about environmental
sustainability. And, while they may show compelling performance when being developed and
evaluated in controlled scenarios with the use of metrics designed to measure their performance in
making correct predictions against a defined gold standard, translation of such systems into real-
world applications is often challenging (Futoma et al., 2020). Subtle biases and assumptions pervade
the test data that is used in the algorithmic training, and then when the system is deployed on real-
world data the performance of the system is significantly poorer (Kelly et al., 2019).

Moreover, such models may learn human biases that are present in their training data, such as
prejudices against women or persons from minority groups (Bender et al., 2021). Many of these
types of prejudices can be seen to arise naturally from the combination of unbalanced input data,
combined with a lack of understanding on the part of the model. For example, even in modern
machine translation models, which perform on average very well for many translation tasks, reliably
translate the English ‘they’ to the French ‘ils’ (the masculine form of they), even in a sentence such
as ‘They gave birth to their firstborn children.” (Translated as ‘lls ont donné naissance a leurs



premiers enfants’ by DeepL). Machine learning models only contain statistical, associative
knowledge, and ‘ils’ is far more common in French language expressions that translate ‘they’ than
‘elles’ is. Ontologies, on the other hand, contain axioms that specify constraints that must always
apply, such as that — canonically at least, for humans, only females can give birth. But this type of
knowledge is not usually accessible to neural-network-based learning systems. And at present, even
most approaches that combine semantic information from ontologies into neural networks only
include associative semantic information. That is, they can be used to enhance a learning process by
encompassing the network neighborhood of a class in an ontology, specifying which classes are
closely related — or by representing which classes are more similar in terms of sharing similar
relationships or axiomatic patterns. But they cannot be used to encode constraints which must be
adhered to in an axiomatic, rules-based fashion, such as that men do not give birth. The standard
architectures of modern neural networks simply do not allow for logical expressions, rules or
constraints, nor for reasoning, consistency checking or inference.

There are emerging novel architectures that aim to address this limitation. For example, Logical
Neural Networks (Riegel et al., 2020) offer an architecture for a neural network in which each
neuron has a defined logical meaning as a component of a logical formula. That is, a neuron can
represent an and operation, or an or operation, or negation. The network can then be trained on
data and will try to learn a representation that is maximally consistent with the overall logical
formula that is expressed by the combinations of the configured neurons. This is one example of a
“neuro-symbolic” (Garcez and Lamb, 2020) approach to neural network architecture, which aims to
combine elements from knowledge representation and symbolic reasoning (such as is used in
ontologies) and statistical learning (such as is used in more typical neural networks). On their own,
such logic-driven networks may be of perhaps limited use, in their being able to do certain forms of
logical reasoning that could also be done symbolically, but their great potential lies in the fact that
they can be combined with other networks in layered, hybrid architectures which are then able to
combine traditional associative learning with the use of logical inference or the enforcement of
certain sorts of logical constraints, such as have been used in practice for example to develop a
sophisticated query answering system over public knowledge graphs including WikiData (Abdelaziz
et al., 2021). It is widely anticipated that such hybrid systems will become more and more essential
in the future to address the limitations of the current generation of deep learning systems, leading
some to say “if the aim is to build a rich Al system, that is, a semantically sound, explainable and
ultimately trustworthy Al system, one needs to include with it a sound reasoning layer in
combination with deep learning” (Garcez and Lamb, 2020). The article (Garcez and Lamb, 2020) sets
out a vision for a “third wave” of Al systems in which symbols and symbolic reasoning act as
constraints on sub-symbolic networks and thereby help to improve learning performance as a part
of a continuous positive cycle of feedback between learning and reasoning — a vision which the use
of ontologies together with neural networks is well-positioned to turn into a reality with immense
benefits across scientific domains.

Automatically Extending Ontologies

One of the main limitations of the broad use and adoption of ontologies and other formal
knowledge representation structures is the time it takes to capture and encode content into them.
This is known as the ‘knowledge acquisition bottleneck’. Typically, ontologies capture expert
knowledge, and require ample time from experts — experts who are familiar with the logical
structures of the language — in their development. As such, there is great interest in algorithms and



approaches that are able to automate the assembly of content into ontologies, or those that are
able to extend existing ontologies with novel content.

Early attempts to automate the acquisition of knowledge into ontologies arose out of the methods
of natural language processing, that is, automated approaches to interpreting and parsing text
captured in a natural (human) language, such as English or French. In most ontology learning
approaches (Gémez-Pérez and Manzano-Macho, 2003; Asim et al., 2018) natural language
processing is used to process the textual data with the objective of identifying terms for entities that
are important for the domain and that should correspond to classes in the ontology, together with
their relationships, including hierarchy and other semantic relationships. Simple approaches identify
noun phrases using linguistic processing, and use simple rules-based patterns to extract
relationships between these noun phrases. More sophisticated approaches use corpus-based
contextual information, such as the words that co-occur the most frequently, or in modern language
models the learned contextual embeddings, to derive meanings for and thereby semantic distances
between words or phrases such that they can be clustered or aggregated.

A widely used ontology learning from text approach, Text20nto (Cimiano and Volker, 2005), uses a
combination of algorithms to suggest novel ontology content. From a corpus of text, it initially
performs linguistic processing in order to determine parts of speech and extract words or phrases
that are anticipated to relate to classes and to relations. This part of the overall architecture is rules-
based and language-specific. The default available different implementation is the English language,
with separately available modules supporting other languages such as, for example, Spanish (Volker,
Fernandez and Sure-Vetter, 2008) and more recently French (Hajji, Qbadou and Mansouri, 2020).
The candidate novel classes that are linguistically extracted are then subjected to several
guantitative algorithms to predict their relevance for an ontology, including relative term frequency
(the number of times term appears in a document relative to the total number of terms in the
document), term frequency — inverse document frequency (down-weighting terms that appear in
nearly all documents), and a commonly used method called C-value / NC-value that aims to separate
meaningful multi-word terms from their surrounding contexts (Frantzi, Ananiadou and Mima, 2000).
Each of these methods give a quantitative value that is associated with the relevant term and then
normalized for use as a probability which is associated with the prediction in the Text20nto tool.
Having quantitative probabilities allows for user-defined thresholds which allow custom decisions
about filtering between predictions and noise. The tool also contains various algorithms for relation
extraction from the text, which in turn are also associated with probabilistic scores. Finally, the tool
presents the highest-ranked predictions to the user via a graphical interface, which allows the user
to select and tune the resulting ontology by adding or removing classes or relations, before saving
the resulting new ontology.

While ontology learning focuses on creating new ontologies, in scientific contexts where there is
often a pre-existing ontology, the extension of a pre-existing ontology with novel content is an even
more important scenario. Approaches to ontology extension are broadly modelled on those of
ontology learning, while often using the content of ontology as a ‘seed’ to identify additional terms
and phrases that are important for the target domain. For example, in (Liu et al., 2005) a system is
proposed that uses co-occurrence analysis between seed terms and discovered terms in a corpus to
rank candidate terms for inclusion in an extended version of an ontology. Term discovery is followed
by term disambiguation by reference to a dictionary, and rules-based determination of subsumption
(hierarchical) relationships from the corpus to connect novel terms to the original seed ontology. An
alternative paradigm uses approaches from machine learning and statistics to suggest novel content
for inclusion, for example based on text clustering (Liu and Li, 2018) or topic models. An exemplar of



such approaches is the recent one introduced in (Li, Armiento and Lambrix, 2019) that builds on
phrase-based topic models (El-Kishky et al., 2014) to extract phrases with close relevance to the
topics given by the ontology that is being extended, and then uses a ‘concept lattice’ approach on
the resulting phrases in order to rank and structure candidate phrases for inclusion in the ontology.

It should be noted that automatically assembled ontology extensions are commonly rather noisy,
and may potentially introduce biases or errors from the literature into the ontology. In general, all
approaches which aim to extract conceptualizations from text corpora are subject to high levels of
noise. To mitigate against such problems, many of the automated ontology extension approaches
involve several manual steps, in which experts evaluate concepts and related phrases to sort out
these potential issues. For example, the topic-modelling approach described above which has been
applied to extend ontologies in the materials science domain (Li, Armiento and Lambrix, 2019)
makes extensive use of human selection in interpreting the results and deciding which of the
suggested and ranked content entities should be included in the resulting ontology. The examples of
decisions which the pipeline is not able to automatically make is whether the extracted topic is too
general for the stated domain (e.g. ‘electron transfer’ for a materials science domain ontology), or is
an exact synonym of an entity that is already included in the ontology, or in fact is a novel entity that
should therefore be included. Of course, there are also examples of candidates that are extracted
and yet are not relevant for the ontology at all (noise). Moreover, even if candidate phrases are
good recommendations for inclusion in an extended version of the ontology, the existing
approaches do not retrieve all of the required metadata, such as definitions, for these added classes.
The need for manual intervention suggests that for the foreseeable future, “human-in-the-loop”
approaches may still dominate knowledge acquisition rather than fully automated approaches.

The approaches to extending ontologies based on clustering and contextual similarities between
known ontology content and phrases in a corpus are clearly related to the similarity between words
and phrases that is represented by their learned embeddings in modern language models. Thus,
modern language models in combination with pipelines that are able to combine machine learning
with ontology content seem to offer a promising technology for significantly improving ontology
extension approaches. And indeed, there are some promising initial efforts in this direction. In a
recent, state-of-the-art implementation of ontology extension through learning (Althubaiti et al.,
2020), the target domain is diseases and the target ontology is the Disease Ontology (DO). The
implementation starts by using an automated dictionary-based text annotation tool (Whatlzlt) to
automatically annotate a relevant corpus of text. They then use Word2Vec (Mikolov et al., 2013) to
generate contextual embedding vectors for the corpus. These embeddings are subsequently used to
suggest words or phrases that are similar enough to the existing ontology content to count as a
synonym, subclass or related class of one of the classes in the ontology. To predict which of these
novel candidates are subclasses of the root class ‘disease’ rather than merely related classes, they
train an artificial neural network classifier to make this prediction. They evaluate classifiers able to
distinguish infectious from anatomical diseases (a fundamental distinction in the Disease Ontology).
They further evaluate extending this distinguishing capability to several of the sub-classes of these
two classes in a multi-class classification approach. However, the performance of the neural network
is determined to decrease rapidly with the number of classes added to the multi-class classification
task, which in the end still only tackles fewer than 10 class distinctions, far short of the overall
number of classes in the disease ontology classification. Moreover, the whole pipeline still only
operates within one semantic domain — custom classifiers would need to be trained for each
semantic domain for which this approach needs to be applied.



We might envision that some of the hybrid approaches to machine learning discussed above in the
section on machine learning with ontologies might have applicability also to the problem of ontology
extension. For example, noise might be reduced by using constraints applied to a neural network
through, for example, including a logical neural network layer in the overall architecture. This would
allow domain experts to specify constraints on the type of recommendations that are returned by
the system in a way that reduces the overall search space and may make the resulting
recommendations have higher quality. However, such architectures do not appear to have been
applied to this problem in practice yet.

Applications in the Behavioral Sciences

Historically, ontologies have been adopted at scale mainly within the biomedical sciences. However,
in recent years they have started to see adoption more widely within other scientific domains such
as ecology, agriculture, economics, and the behavioral sciences. The Human Behaviour-Change
Project (HBCP; Michie, Thomas, et al., 2020), mentioned above, has developed a large-scale suite of
ontologies for the domain of human behavior and behavioral interventions, which has been applied
to organize and mine the literature using a combination of manual annotation and machine learning.
Automation within the HBCP consists of two separate components — an information extraction
component, which aims to identify all the relevant aspects of interventions within the full texts of
intervention reports, and a prediction component, which learns from both manually annotated and
automatically extracted intervention reports to predict the effectiveness of interventions given a
combination of parameters describing the intervention scenario. The outcome prediction model of
the HBCP consists of a deep learning neural network model with a combination of ontology-based
annotations and text as inputs, thus, it exemplifies the use of ontologies together with machine
learning to solve a challenging task in the automation of analyses.

The HBCP project has covered new ground in several different ways and has also been able to derive
several learnings about the particular challenges that arise when applying these types of
technologies to the behavioral sciences. Firstly, we can note that in contrast to the biomedical
domain, the terminology that is used in scientific studies in the behavioral sciences overlaps with
informal and colloquial usages of vocabulary and terminology across multiple other domains. While
in the biomedical sciences, technical vocabulary includes gene names, drug names and disease
names, each of which is strongly semantically typed and forms a vocabulary that for the most part is
distinct from the vocabularies used in other sciences and domains, in the behavioral and social
sciences the terminology that is used reflects human activities and concerns, social structures and
patterns of behaviour. These entities are also referred to frequently within other disciplines, as
many studies that involves humans, even biomedical studies of drugs and diseases, will ultimately
need to refer to population groups, activities and behaviors. Moreover, a good portion of the
vocabulary used in the behavioral and social sciences have colloquial meanings, such as for example
when the term ‘behavior’ is used in expressions such as “cancer genes may behave distinctly in
different experimental settings” or “the hippocampus behaved like other DMN regions”. Here, the
meaning of the term ‘behavior’ is very different from the technical sense in which it is used in the
study of human behavior, which is clearly one of the core semantic categories within the behavioral
and social sciences. The learning of embeddings from contexts of use in large-scale corpora of text —
language modelling — can be expected to perform more poorly on the specific technical uses of such
terminology when there are a very large number of colloquial uses outnumbering the technical uses.
Moreover, the same terminology may have very different implications or meanings in different



contexts. For example, quitting in a smoking cessation intervention is the desirable objective, while
in a physical activity intervention it is an undesirable outcome or side effect.

Relatedly, there is a lack of an organized repository for the literature relevant to the behavioral
sciences. In the biomedical sciences, organized repositories such as PubMed exist and can be taken
as the definitive source for relevant literature for the domain, comprehensive with respect to
abstracts, and even encompassing a substantial portion of open-access full text. A great number of
the semantic text-based methods that have been developed for the biomedical domain depend on
the existence of open and accessible repositories of relevant text and data. In the behavioral
sciences, in contrast, the relevant literature spans several different disciplines including psychology,
the social sciences, and economics as well as the more medically-oriented branches e.g. behavioral
medicine. These disciplines may have quite different publication practices to those in the biomedical
domain, and in some of these even discovering the existence of the relevant literature may be
subject to a paywall, e.g. psychology (JSTOR). Moreover, the challenge with acquiring content for
training learning systems is not limited to the availability of textual data in the form of scientific
publications. There is also a much larger variety of data available in the public domain in the
biomedical sciences than in the behavioral sciences, including for example structured and ontology-
annotated data such as the associations of genes to functions, or databases of drugs and
metabolites and their names and synonyms. In the behavioral sciences, there is significantly less
publicly available data, and any research data involving humans is subject to privacy and ethical
concerns that may mean that this situation will not change dramatically in the future.

Finally, the behavioral science domain is characterized by a very large number of distinct semantic
types. In biomedical contexts, it is more common that although there may be a large number of
named entities within a given domain or application area, there are a relatively small number of
semantic types (e.g. drugs, biological processes, diseases). This means that automated identification
of new entities belonging to a given semantic type can benefit from large numbers of training
examples, as there are many examples of existing entities belonging to that semantic type. However,
in the behavioral sciences, there are many different semantic types — individuals, populations,
interventions, the full range and scope of behaviors, population and personal attributes, location
attributes, and moreover all the semantic types from biomedicine which may also have relevance in
some intervention contexts. Added to this semantic complexity, there are very heterogeneous ways
in which such semantic types are described in the literature, for example, appearing in text
descriptions or in tables. Moreover, the theoretical frameworks in which such research is conducted
may introduce technical terminology from different theoretical backgrounds which may be difficult
for a language model to disentangle, as there are a wide range of different theories and constructs
in use within behavioral science more broadly, and no systematic way to map their overlaps and
commonalities.

Taken together, these observations suggest that machine learning methods will perform more
poorly in the behavioral domain when compared to their performance in the biomedical domain.
Nevertheless, the semantic clarity afforded by community-wide efforts to develop ontologies to
survey, map, structure and organize the content of the behavioral domain will help, as will
concordant efforts to open up the associated literature and to increase the scope of available data.
In addition, modern hybrid approaches which are able to harness a diversity of sources of inputs —
ontologies, data, text corpora — and harness them for learning as well as logic based reasoning and
causal or theoretical inferences — will increase the power of both learning and reasoning approaches
by allowing them to be used in combinations that harness the strengths of each.



Conclusions

Reasoning about the full complexity of human behavior in context may be one of the most complex
tasks which we can set ourselves — and as such, it is no surprise that it is also difficult to teach to
machines. Nevertheless, many advances have been made recently towards formalization in this
domain, and it is exciting that this coincides with a time during which we are witnessing a potential
technological explosion of new methods that are able to harness formalizations such as ontologies
together with powerful data-driven learning algorithms. There is much work still to do to bring the
wealth of knowledge and expertise in the behavioral domain into computable formats and to make
sufficient structured data and text available for large-scale learning algorithms to consume. The
most exciting frontiers lie at the interfaces between knowledge and inference, between learning and
reasoning, between meanings and patterns. To this end, it can even be anticipated that the
behavioral sciences can have a positive impact on the computational sciences, both by providing
challenging use-cases for the development of novel methods, and also through synthesizing
knowledge about human reasoning and behaviour, which in turn can inform the development of
artificial approaches.
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