Mathematics and Statistics of Weather Forecasting

Accurate weather forecasting is vital to many sectors of the economy, such as the airline industry and agriculture. And lives can depend on the accuracy of predictions for hurricanes and major storms. Mathematical weather forecasting combines equations that define physical laws of atmospheric events with current weather observations. Weather forecasting has improved significantly over the past decades because of mathematical and statistical advances, innovations in mathematical modeling, better integration of weather monitoring data, more efficient computing, and progress in quantifying uncertainty of predictions.
Putting all these pieces together ensures that the best weather estimates are available when we need them most.
Forecasting methods and understanding uncertainty

Forecasting models typically treat the atmosphere as if it were a fluid with eddies and currents, just like water. These complex models continue to improve over time with the help of mathematical and statistical advances

Weather data from multiple sources - spanning different physical and time scales, and collecting different types of information like wind speed, ainfall or temperature - are combined into forecast models

Efficient computing

These models are computationally intensive, and depend on efficient numerical methods and powerful computers to deliver fast results.

Uncertainty quantification

Accounting for uncertainty in model predictions is difficult due to disparate data, varying methods for modeling, and other data science-related challenges. Innovation in this space requires advanced mathematical and statistical approaches.

Satellites collect digital images of the Earth at a variety of scales and time frequencies.

Aircraft carry instruments that automatically report air pressure temperature and wind speed.

Dropsondes, expendable weather reconnaissance devices, are dropped from an aircraft to measure and track storm conditions as the device falls to the surface.

Surface synoptic observations (SYNOP) are updates from thousands of manned and automated weather systems on land or sea that report observations at a fixed time interval.
that are deflected back by precipitation to infer information about rain and snow.

Radar uses radio waves

