Skip to main content

Currently Skimming:

Merging Living Cells and Microsystems Engineering
Pages 99-104

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 99...
... Among these features are biochemical reaction chambers, bioseparation channels, arrays of biological molecules, integrated microelectronics, micropumps and microvalves to control fluid movement, and many other components. These features can also be combined to create fully integrated devices that perform sample preparation, separation, detection and/or analysis, as well as drug delivery and in situ mechanical sensors.
From page 100...
... Emerging living cell-based devices are expected to become key technologies in twenty-first century medicine with a broad range of applications, from diagnostic, tissue engineered products to cell-based, highthroughput drug screening tools to basic cell biology tools. Achieving these challenging goals will depend heavily on processing techniques at the micron scale.
From page 101...
... The PDMS replica is then dipped in an ink solution containing SAMs and microstamped onto gold or silver-coated surfaces to transfer the SAMs to the regions where the PDMS stamp contacts the substrate. Because SAMs with many different functional end-groups can be generated easily, this approach enables engineering of surfaces at the micron scale with a large assortment of chemistries containing adhesive and nonadhesive microdomains.
From page 102...
... The rich assortment of living Microsystems that can be built using bioMEMS techniques have important applications in fundamental cell biological studies, tissue engineering, cell separation and culture devices, and drug discovery. By precisely controlling the shape and type of the extracellular matrix of cells using micropatterned islands of cell adhesive and nonadhesive molecules, it is now possible to investigate how cells respond to their environments and determine what controls cellular phenotype.
From page 103...
... As this technology evolves, it will become possible to move mammalian oocytes and embryos through various microchannels to perform a multitude of processing steps, such as microinjection of a sperm for fertilization of an oocyte or drilling of the zone pellucida to enhance embryo hatching, all without the need for cumbersome handling and manipulation procedures in a clinical setting. Biosensors that incorporate living cells have the added advantage of rapidly monitoring the presence of toxic molecules or environmental pollutants, including biowarfare and chemical warfare agents (Pancrazio et al., 1999~.
From page 104...
... This concise overview describes some of the key advances and challenges related to the coming merger of microfabrication technology and living cells and a sampling of a broad range of exciting opportunities and promises in biology and medicine. REFERENCES Bhatia, S.N., and C.S.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.