Skip to main content

Currently Skimming:

Technology for Human Beings
Pages 29-52

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 31...
... In safety-critical systems, however, such as nuclear power plants, hospitals, and aviation, the consequences can threaten the quality of life of virtually everyone on the planet. In the United States, for example, preventable medical errors are the eighth leading cause of death; in hospitals alone, errors cause 44,000 to 98,000 deaths annually, and patient injuries cost between $17 billion and $29 billion annually (IOM, 1999~.
From page 32...
... The saturation properties of water are shown in graphical form as a bell curve rather than in alphanumeric form as in a steam table. Furthermore, the thermodynamic state of the plant can be described as a Rankine cycle, which has a particular graphical form when plotted in temperature-entropy coordinates.
From page 33...
... THE HUMAN FACTOR 33 FIGURE 1 A typical control room for a nuclear power plant. Source: Photo courtesy of C.M.
From page 34...
... The lowest level usually describes the behavior associated with the particular (potentially hazardous) process being controlled (e.g., the nuclear power plant)
From page 35...
... The layers of a complex sociotechnical system are increasingly subjected to external forces that stress the system. Examples of perturbations include: the changing political climate and public awareness; changing market conditions and financial pressures; changing competencies and levels of education; and changes in technological complexity.
From page 36...
... That is why so-called "work-to-rule" campaigns requiring that people do their jobs strictly by the book usually cause complex sociotechnical systems to come to a grinding halt. Second, the migration in work practices usually does not have immediate visible negative impacts.
From page 37...
... Corporate design practices must also be modified to focus on producing technological systems that fulfill human needs as opposed to creating overly complex, technically sophisticated systems that are difficult for the average person to use. Finally, public policy decisions must be based on a firm understanding of the relationship between people and technology.
From page 38...
... 1996. Evaluation of a Rankine cycle display for nuclear power plant monitoring and diagnosis.
From page 39...
... Because "driver error" is a contributing factor in more than 90 percent of these crashes, it is clear that solutions to transportation problems, perhaps more than in any other discipline, must be based on human factors. One of the hurdles to assessing the human factors issues associated with driving safety is the continuing lack of data that provides a detailed and valid representation of the complex factors that occur in the real-world driving environment.
From page 40...
... They cannot be used to predict the impact of a safety device or policy change on the crash rate. Advances in sensor, data storage, and communications technology have led to the development of a hybrid approach to data collection and analysis that uses very highly capable vehicle-based data collection systems.
From page 41...
... , driver behavior in proximity to heavy trucks, and the quantitative relationship between the frequency of crashes and other critical incidents. However, a primary purpose of the 100 Car Study is to develop instrumentation and data collection and analysis techniques for much larger studies (e.g., a study of 10,000 cars)
From page 42...
... Using this methodology, it was determined that, although team drivers obtained a poorer quality of sleep than single drivers, the poor quality was offset by the efficient use of relief drivers. The results showed that single drivers suffered the worst bouts of fatigue and had the most severe critical incidents (by about 4 to 1~.
From page 43...
... For software products to be successful in terms of ease of use, HFE practices must be incorporated early in the product development cycle. In areas of fierce competition or when innovation is necessary for product success, usercentered design practices have been shown time and again to make or break a product.
From page 44...
... RATIONALE FOR USING HUMAN FACTORS ENGINEERING The most obvious reason for including user-centered design practices during software product development is to ensure that the product will be useful (i.e., solves a real problem experienced by the target market) and usable (i.e., easy to learn and remember and satisfying to use)
From page 45...
... · We had tested ideas using tasks from real end-user scenarios and benchmarked them against existing software tools, iterated our software product designs, and retested them. · We had learned a great deal about perception, memory, task switching,
From page 46...
... CONCLUSION I have argued that innovation and technology transfer for successful software products must be guided by sound HFE, because customers today expect it and clearly favor usable systems. In addition, sound HFE saves time and money during software development because there are fewer calls to the help desk, fewer product returns, more satisfied and loyal customers, more innovative product solutions, and faster development life cycles.
From page 47...
... In the last 15 years, research has led to the development of DBI systems to assist people with severe physical disabilities. As work in the field continues, mainstream applications for DBIs may emerge, perhaps for people in situations of imposed disability, such as jet pilots experiencing high G-forces during maneuvers, or for people in situations that require hands-free, heads-up interfaces.
From page 48...
... Experiments have shown that people can learn to control their brain signals enough to operate communication devices such as virtual keyboards, operate environmental control systems such as systems that can turn lights and TVs on and off, and even potentially restore motion to paralyzed limbs. Although DBI systems still require expert assistance to operate, they have a significant potential for providing alternate methods of communication and control of devices (Wolpaw et al., 2002~.
From page 49...
... in subjects enabling neural firings to be captured and recorded (Kennedy et al., 2000~. Subjects control this form of DBI by increasing or decreasing the frequency of neural firings, typically by imagining motions of paralyzed limbs.
From page 50...
... In effect, a neural prosthesis could reconnect the brain to paralyzed limbs, essentially creating an artificial nervous system. DBI controls could be used to stimulate muscles in paralyzed arms and legs to enable a subject to learn to move them again.
From page 51...
... IEEE Transactions on Rehabilitation Engineering 8(2)


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.