Skip to main content

Currently Skimming:

Executive Summary
Pages 1-11

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... Despite popular perceptions that earthquakes are an issue only for the western states, much of the United States is at risk, and major cities in the Midwest and on the East Coast are particularly vulnerable owing to a lack of awareness and preparedness. If this nation is to avoid the consequences in human, economic, social, and political terms of an earthquake disaster, it must act to ensure that communities are well planned to avoid hazards, that buildings and lifelines are robust and resilient in their construction, and that the inevitable emergency response will be timely and targeted.
From page 2...
... to foster improvement in the seismic design and performance of the nation's civil and mechanical infrastructure. NEES was conceived as a networked collaboratory2 that extends research beyond physical testing and emphasizes integrated experimentation, computation, theory, database development, and model-based simulation in earthquake engineering research.
From page 3...
... The committee was charged with developing a long-term earthquake engineering research agenda that utilized the unique capabilities of NEES, both in physical and computational simulation and information technology. The committee's overarching vision as it formulated the research agenda was that earthquake disasters, as the committee defined them, can ultimately be prevented.3 This is the committee's grand challenge to the broad community of NEES stakeholders, to make the prevention of earthquake disasters a reality.
From page 4...
... Geotechnical Facilities and lifelines in To attain more robust modeling engineering seismic environments, procedures and predictive tools, especially structures more powerful site-character constructed of, founded on, ization techniques, and more or buried within loose quantitative guidelines for saturated sands, reclaimed soil-improvement measures. lands, and deep deposits of soft clays, are vulnerable to earthquake-induced ground damage.
From page 5...
... These tasks would take advantage of the ability of multiple NEES equipment sites to address the many interwoven technical issues, offer ample opportunities for interdisciplinary collaboration and synergy, and provide enormous paybacks over time. Develop Economical Methods for Retrofit of Existing Structures The economical retrofit of existing structures is perhaps the most important issue facing earthquake-prone communities today.
From page 6...
... A new generation of retrofit technologies that cost less than existing, less effective techniques but preserve cultural and architectural resources and protect real estate investments from total loss is long overdue. Cost-Effective Solutions to Mitigate Seismically Induced Ground Failures Within Our Communities Historical earthquakes have repeatedly borne out that damage is greater in poorer soil areas, and significant property losses (and sometimes human casualties)
From page 7...
... . Because PBSD methods require more detailed and extensive knowledge of how structures fail than do traditional prescriptive approaches, gaining this understanding will require a comprehensive body of research data, convenient computer analysis tools that support the reliable and routine analysis of progressive earthquake damage in buildings, and assessment of how damage affects the seismic response of buildings.
From page 8...
... Loss prediction models, validated through test and experiment and augmented by simulation videos, could be the needed instrument of change. However a lack of data on existing housing stock and the nonresidential building inventory, including construction type and replacement value, is an impediment to the development of improved loss prediction models.
From page 9...
... The vulnerability to tsunamis is particularly acute in developing countries as well as in small coastal communities in developed countries where people live in close proximity to the sea and have few resources either to relocate to less vulnerable areas or to implement protective measures. It will be challenging to realize the committee's vision of preventing earthquake disasters in such areas where people have little choice but to live with these tsunami risks.
From page 10...
... The National Science Foundation, as the lead agency in the NEES partnership, should assume leadership and put in place a management structure to articulate objectives, identify and prioritize research needs, and assure a stable flow of support to achieve the objectives established for NEES. This should include the establishment of an advisory body to provide strategic guidance to NEES program activities.
From page 11...
... Recommendation 6. The partnership of public and private organizations that will support NEES efforts should build a national consensus to ensure that the research and development needed to achieve earthquake loss reduction is fully appreciated at all levels of government and is provided with adequate resources to realize the vision of ultimately preventing earthquake disasters in the United States.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.