Skip to main content

Currently Skimming:

Executive Summary
Pages 1-16

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... Nongenetic engineering methods of genetic modification include embryo rescue, where plant or animal embryos produced from interspecies gene transfer, or crossing, are placed in a tissue culture environment to complete development. Other methods include somatic hybridization, in which the cell walls of a plant are removed and the "naked" cells are forced to hybridize, and induced mutagenesis, in which chemicals or irradiation are used to induce random mutations in DNA.
From page 2...
... The committee was charged to focus on mechanisms by which unintended changes in the biochemical composition of food occur as a result of various conventional and genetic engineering breeding and propagation methods, the extent to which these mechanisms are likely to lead to significant compositional changes in foods that would not be readily apparent without new or enhanced detection methods, and methods to detect such changes in food in order to determine their potential human health effects. The committee was further charged to identify appropriate scientific questions and methods for determining unintended changes in the levels of endogenous nutrients, toxins, toxicants, allergens, or other compounds in food from genetically engineered organisms (GEOs)
From page 3...
... Because most crops can produce allergens, toxins, or antinutritional substances, conventional breeding methods have the potential to produce unintended compositional changes in a food crop. Genetic Modification Hazards associated with genetic modifications, specifically genetic engineering, do not fit into a simple dichotomy of genetic engineering versus nongenetic engineering breeding.
From page 4...
... 4 likely a More methods the only of fects None ef fects. ef unintended of risk unintended of zero carry likelihood table the Relative in likely Less of of population population from embryo from plant distantly mutagenesis, crossing crossing rDNA rDNA and/or from from of of (SCV)
From page 5...
... The gray tails indicate the committee's conclusions about the relative degree of the range of potential unintended changes; the dark bars indicate the relative degree of genetic disruption for each method. It is unlikely that all methods of either genetic engineering, genetic modification, or conventional breeding will have equal probability of resulting in unintended changes.
From page 6...
... Although postmarketing surveillance has not been used to evaluate any of the GE crops that are currently on the market and there are challenges to its use, this approach holds promise in monitoring potential effects, anticipated and unanticipated, of GE foods that are not substantially equivalent to their conventional counterparts or that contain significantly altered nutritional and compositional profiles. FRAMEWORK FOR IDENTIFYING AND ASSESSING UNINTENDED ADVERSE EFFECTS FROM GENETICALLY MODIFIED FOODS The committee developed a framework for a model system based on methods to identify appropriate comparators; increase the knowledge of the determinants of compositional variability; increase the understanding of the biological effects of secondary metabolites in foods; develop more sensitive tools for assessing potential unintended effects from complex mixtures; and improve methods for tracing exposure to GM foods.
From page 7...
... EXECUTIVE SUMMARY 7 Newly Modified Organism Are new or enhanced levels of a potentially hazardous compound present, and/or are levels of beneficial compounds reduced? YES OR UNKNOWN FIGURE ES-2 Flowchart for determining potential unintended effects from genetically modified foods.
From page 8...
... All evidence evaluated to date indicates that unexpected and unintended compositional changes arise with all forms of genetic modification, including genetic engineering. Whether such compositional changes result in unintended health effects is dependent upon the nature of the substances altered and the biological consequences of the compounds.
From page 9...
... Recommendation 2 The committee recommends that the appropriate federal agencies determine if evaluation of new GM foods for potential adverse health effects from both intended and unintended compositional changes is warranted by elevated concern, such as identification of a novel substance or levels of a naturally occurring substance that exceeds the range of recommended or tolerable intake.
From page 10...
... . The knowledge base required to interpret results of profiling methods, however, is insufficiently developed to predict or directly assess potential health effects associated with unintended compositional changes of GM food, as is the necessary associative information (e.g., proteomics, metabolomics, and signaling networks)
From page 11...
... The information collected should be used to identify food consumption patterns in the general population and susceptible population subgroups that indicate a potential for adverse reactions to novel substances or increased levels of naturally occurring compounds in GM food. Additional Tools for Postcommercialization: Identification and Assessment of Unintended Effects Findings Postcommercialization or postmarket evaluation tools for verifying and validating premarket assessments of novel substances in food or detectable changes in diet composition, including tracking and epidemiological studies, are important components of the overall assessment of food safety.
From page 12...
... with its conventional counterpart indicate they are compositionally very similar; exposure to novel components remains very low. Thus the process of identifying unintended compositional changes in food is best served by combining premarket testing with postmarket surveillance, when compositional changes indicate that it is warranted, in a feedback loop that follows a new GM food or food product long term, from development through utilization (see Figure ES-2)
From page 13...
... · Utilize existing nationwide food intake and health assessment surveys, including NHANES, to: -- Collect comparative information on diet and consumption patterns of the general population and ethnic subgroups in order to account for anthro pological differences among population groups and geographic areas where GM foods may be consumed in skewed quantities, recognizing that this will be possible only under selected circumstances where intakes are not evenly distributed across population subgroups of interest and the relevant outcome data are available. -- Provide better representation of the long-term nutritional and other health status information on a full range of children and ethnic groups whose intakes may differ significantly from those of the general population to de termine whether changes in health status have occurred as a consequence of consuming novel substances or increased levels of naturally occurring com pounds in GM foods released into the marketplace, recognizing again that this will be possible only under selected circumstances that allow one to assess associations between skewed eating patterns and specified health out comes.
From page 14...
... This effort should include: · Focusing research efforts on developing new tools that can be used to assess potential unintended adverse health effects that result from genetic modification of foods. Such tools should include profiling techniques that relate metabolic components in food with altered gene expression in relevant animal models to specific adverse outcomes identified in GM animal models (animals genetically modified by contemporary biotechnology methods that are proposed to enter the food system)
From page 15...
... The committee has identified and recommended pre- and postmarket approaches to guide assessment of unintended compositional changes that could result from genetic modification of foods and research avenues to fill the knowledge gaps. The recommendations presented in this report reflect the committee's application of its framework to questions of identification and assessment of unintended adverse health effects from foods produced by all forms of genetic modification, including genetic engineering, and they can serve as a guide for evaluation of future technologies.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.