Skip to main content

Currently Skimming:

Summary
Pages 1-12

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... is required to establish exposure standards for contaminants in public drinking-water systems that might cause any adverse effects on human health. These standards include the maximum contaminant level goal (MCLG)
From page 2...
... the Committee's eValuation To accomplish its task, the committee reviewed a large body of research on fluoride, focusing primarily on studies generated since the early 1990s, including information on exposure; pharmacokinetics; adverse effects on various organ systems; and genotoxic and carcinogenic potential. The collective evidence from in vitro assays, animal research, human studies, and mechanistic information was used to assess whether multiple lines of evidence indicate human health risks.
From page 3...
... The biggest contributor to exposure for most people in the United States is drinking water. Estimates from 1992 indicate that approximately 1.4 million people in the United States had drinking water with natural fluoride concentrations of 2.0-3.9 mg/L, and just over 200,000 people had concentrations equal to or exceeding 4 mg/L (the presented MCL)
From page 4...
... Severe enamel fluorosis occurs at an appreciable frequency, approximately 10% on average, among children in U.S. communities with water fluoride concentrations at or near the current MCLG of 4 mg/L.
From page 5...
... Earlier studies indicated that the prevalence of moderate enamel fluorosis at that concentration could be as high as 15%. Because enamel fluorosis has different distribution patterns among teeth, depending on when exposure occurred during tooth development and on enamel thickness, and because current indexes for categorizing enamel fluorosis do not differentiate between mottling of anterior and posterior teeth, the committee was not able to determine what percentage of moderate cases might be of cosmetic concern.
From page 6...
... Thus, to answer the question of whether EPA's MCLG protects the general public from stage II and stage III skeletal fluorosis, the committee compared pharmacokinetic model predictions of bone fluoride concentrations and historical data on iliac-crest bone fluoride concentrations associated with the different stages of skeletal fluorosis. The models estimated that bone fluoride concentrations resulting from lifetime exposure to fluoride in drinking water at 2 mg/L (4,000 to 5,000 mg/kg ash)
From page 7...
... Those members judged that more evidence is needed to conclude that bone fractures occur at an appreciable frequency in human populations exposed to fluoride at 4 mg/L and that the MCLG is not likely to be protective. There were few studies to assess fracture risk in populations exposed to fluoride at 2 mg/L in drinking water.
From page 8...
... Endocrine Effects The chief endocrine effects of fluoride exposures in experimental animals and in humans include decreased thyroid function, increased calcitonin activity, increased parathyroid hormone activity, secondary hyperparathyroidism, impaired glucose tolerance, and possible effects on timing of sexual maturity. Some of these effects are associated with fluoride intake that is achievable at fluoride concentrations in drinking water of 4 mg/L or less, especially for young children or for individuals with high water intake.
From page 9...
... Case reports and in vitro and animal studies indicated that exposure to fluoride at concentrations greater than 4 mg/L can be irritating to the gastrointestinal system, affect renal tissues and function, and alter hepatic and immunologic parameters. Such effects are unlikely to be a risk for the average individual exposed to fluoride at 4 mg/L in drinking water.
From page 10...
... Lowering the MCLG will prevent children from developing severe enamel fluorosis and will reduce the lifetime accumulation of fluoride into bone that the majority of the committee concludes is likely to put individuals at increased risk of bone fracture and possibly skeletal fluorosis, which are particular concerns for subpopulations that are prone to accumulating fluoride in their bones. To develop an MCLG that is protective against severe enamel fluorosis, clinical stage II skeletal fluorosis, and bone fractures, EPA should update the risk assessment of fluoride to include new data on health risks and better estimates of total exposure (relative source contribution)
From page 11...
... Additional cross-species pharmacokinetic comparisons would help to validate such models. · Studies of enamel fluorosis -- Additional studies, including longitudinal studies, should be done in U.S.
From page 12...
... · Bone studies -- A systematic study of clinical stage II and stage III skeletal fluorosis should be conducted to clarify the relationship between fluoride ingestion, fluoride concentration in bone, and clinical symptoms. -- More studies of communities with drinking water containing fluoride at 2 mg/L or more are needed to assess potential bone fracture risk at these higher concentrations.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.