Skip to main content

Biographical Memoirs Volume 88 (2006) / Chapter Skim
Currently Skimming:

Vladimir Kosma Zworykin
Pages 368-388

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 369...
... Vladimir Zworykin was born in the town of Mourom in Russia, where his father owned and operated a fleet of steamships on the Oka River. Vladimir studied electrical engineering at the Petrograd Institute of Technology, the elite technical center in tsarist Russia, and graduated in 1912.
From page 370...
... But his main interest was television. For years television systems had operated by scanning successive picture elements by means of rotating discs or drums that exposed one element at a time to a photosensitive cell.
From page 371...
... The video signal in this storing system is what would be obtained in a nonstoring system multiplied by an enormous factor, in practice a large fraction of the number of picture elements. This is the principle of the justifiably famous "television eye" or pickup tube that Zworykin named the "iconoscope," from the Greek eikon (image)
From page 372...
... Cathodoluminescent materials producing a much brighter white image replaced the willemite that produced relatively dim green images on the face of the original kinescopes. The group also developed the electronic circuits for the whole television system, for amplifying weak signals at frequencies higher than possible hitherto, for producing the desired number of scanning lines for synchronizing deflection of the beams at the transmitting and receiving ends, and so forth.
From page 373...
... Hillier succeeded in demonstrating a working model in a very short time, and eventually, with the collaboration of several members of Zworykin's laboratory, he developed a very practical instrument that RCA developed into a product. This achievement involved the design of highly symmetric magnetic lenses; extremely stable high-voltage supplies; foolproof means for inserting the speci
From page 374...
... Shortly thereafter the scanning microscope was developed, which enabled the viewing of surfaces of solids, and it became of great interest to materials scientists such as metallurgists. The pioneer work of Zworykin's laboratory was taken up by many groups the world over and, indeed, had the impact he foresaw; the ability to probe at angstrom scale literally transformed biology and materials science.
From page 375...
... Zworykin's early foresight in 1939 of the potential of electronic computers was a driving force behind the basic contributions that his laboratory was able to pioneer. In the mid-1940s, when there was a struggle to achieve any working models aimed at solving strictly mathematical problems, Zworykin had the vision of the universality of the computer and in particular its use for weather prediction, now a daily routine, and for medical diagnosis, now reaching a clinical stage.
From page 376...
... The kinescope was improved radically by covering the screen with a thin aluminum coating that permitted the use of very high voltages and also reflects the backlight otherwise wasted. This technique, with improved cathodoluminescent materials, provided tubes that could be viewed comfortably in ordinary ambient light and permitted the making of high-intensity tubes for projection.
From page 377...
... Typically he was not content to generalize but brought to fruition a number of concrete devices, such as an ultraviolet translating microscope; a radio endosonde (a tiny radio transmitter that when swallowed, could signal any desired internal condition, such as temperature or acidity) ; a cane with an ultrasonic radar to help the blind avoid obstacles; a quick method for measuring white corpuscles in the blood; and an electronic personal card to keep medical records.
From page 378...
... Ever since Zworykin joined RCA he was able to assemble, nurture, and direct a group of remarkable collaborators, many of whom gained international reputations for their own contributions. This may well be due to Zworykin's uncanny intuition in discovering latent talent in young recruits and his leadership, which provided a unique and superb training unimaginable elsewhere.
From page 379...
... Zworykin was not a gadgeteer but an innovator of great breadth who saw his ideas in the grand perspective of humankind's progress. When Zworykin joined RCA in 1929, he became the director of the Electronic Research Laboratory in Camden, New Jersey, which later also included a group in Harrison, New Jersey.
From page 380...
... Zworykin was the recipient of 29 major awards: 1934 Morris Liebmann Memorial Prize of the Institute of Radio Engineers 1938 Honorary degree of doctor of science, Polytechnic Institute of Brooklyn 1939 Overseas Award from the British Institution of Electrical Engineers Modern Pioneer Award from the National Association of Manufacturers 1941 Rumford Medal of the American Academy of Arts and Sciences 1945 War Department Certificate of Appreciation
From page 381...
... V L A D I M I R K O S M A Z W O R Y K I N 381 1947 Navy Certificate of Commendation The Howard N Potts Medal of the Franklin Institute 1948 Presidential Certificate of Merit Chevalier of the French Legion of Honor 1949 Lamme Medal of the American Institute of Electrical Engineers Gold Medal of Achievement, Poor Richard Club 1951 Progress Medal Award of the Society of Motion Picture and Television Engineers Medal of Honor, Institute of Radio Engineers 1952 Edison Medal, American Institute of Electrical Engineers 1954 Medaille d'Or, L'Union Française des Inventeurs 1959 Trasenster Medal, University of Liege Christoforo Colombo Award Order of Merit, Italian government 1960 Broadcast Pioneers Award 1963 Medical Electronics Medal, University of Liege Albert Sauveur Award, American Society of Metals 1965 Faraday Medal of the British Institution of Electrical Engineers 1966 De Forest Audion Award National Medal of Science 1967 Golden Plate Award of the American Academy of Achievement 1968 Founders Medal of the National Academy of Engineering 1977 Installation in National Inventors Hall of Fame 1980 Ring from Eduard Rhein Foundation Among these awards the most prestigious is the National Medal of Science -- the highest scientific honor in the United States -- which President Lyndon Johnson presented to Zworykin in 1966 "for major contributions to the instruments of science, engineering, and television, and for his stimulation of the applications of engineering to medicine." Zworykin was proud and very appreciative of all the awards and honors that were bestowed on him.
From page 382...
... Zworykin Prize Award in 1950 "for the most important contributions to electronic television," Zworykin insisted on the stipulation that it be given to the young. Vladimir K
From page 383...
... Vladimir K Zworykin is survived by his second wife, the former Katherine Polevitzky whom he married in 1951; Elaine Zworykin Knudsen from Pasadena, California, a daughter from his first marriage; and seven grandchildren.
From page 384...
... Magoun and Dr. George Cody provided editorial assistance in preparing this memoir for publication.
From page 385...
... Malter. The secondary emission multi plier -- A new electronic device.
From page 386...
... Television techniques in biology and medicine. In Advances in Bio logical and Medical Physics Vok.
From page 387...
... The measurement of internal physiological phe nomena using passive-type telemetering capsules. IRE International Convention Record, Part 9, Bio-Medical Electronics, Nuclear Sci ence, Instrumentation, pp.141-144.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.