Skip to main content

Currently Skimming:

Optical Imaging for In Vivo Assessment of Tissue Pathology
Pages 65-72

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 65...
... In each of these examples, the human eye gathers qualitative information about a patient's status based on either the gross visual appearance of tissue or a microscopic evaluation of stained tissue sections or cytologic samples. Despite the clear importance of these qualitative optical approaches in current medical practice, these strategies are only sensitive to a highly limited subset of the wide array of optical events that occur when light interacts with biologic tissue.
From page 66...
... However, in many cases, these technologies are limited by the inherently weak optical signals of endogenous chromophores and the subtle spectral differences between normal and diseased tissue. In the past several years, there has been increasing interest in combining emerging optical technologies with novel exogenous contrast agents designed to probe the molecular-specific signatures of cancer to improve the detection limits and clinical effectiveness of optical imaging.
From page 67...
... The optical absorption of gold colloid yields a brilliant red color, which has been used effectively in consumer-related medical products, such as home pregnancy tests. In contrast, the optical response of gold nanoshells depends dramatically on the relative size of the nanoparticle core and the thickness of the gold shell.
From page 68...
... Based on the core/shell ratios that can be achieved with this protocol, gold nanoshells with optical resonances extending from the visible region to approximately 3 µm in the infrared region can currently be fabricated. This spectral region includes the 800­1,300 nm "water window" of the near infrared, a region of high physiological transmissivity that has been demonstrated as the spectral region best suited for optical bioimaging and biosensing.
From page 69...
... By controlling the physical parameters of the nanoshells, it is possible to engineer nanoshells that primarily scatter light, which is desirable for many imaging applications, or alternatively, to design nanoshells that are strong absorbers, which is desirable for photothermal-based therapy applications.
From page 70...
... The optical and electron-beam contrast qualities of gold colloid have provided excellent detection qualities for immunoblotting, flow cytometry, hybridization assays, and other techniques. Conjugation protocols exist for the labeling of a broad range of biomolecules with gold colloid, such as protein A, avidin, streptavidin, glucose oxidase, horseradish peroxidase, and IgG.
From page 71...
... By careful design of these optical systems, it is possible to generate multiple order of magnitude improvements in optical contrast using nanomaterial imaging agents, which could potentially lead to the detection of much smaller lesions. In addition to examples from our own group, work is being done by other laboratories using a variety of other goldbased nanomaterials.
From page 72...
... 2003. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor anti bodies conjugated to gold nanoparticles.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.