Skip to main content

Currently Skimming:

Summary
Pages 1-12

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... The study of life -- biology -- is a multifaceted endeavor that uses observation, exploration, and experiments to gather information and test hypotheses about topics ranging from climate change to stem cells. The field of biology is so diverse that it can sometimes be hard for one individual to keep its breadth in mind while contemplating a particular question.
From page 2...
... At the first committee meeting, to begin identifying the theoretical foundations of biology, each committee member discussed the theories and concepts underlying his or her particular area of research and addressed how those theories and concepts might connect across the field of biology. The talks demonstrated that biologists from all subdisciplines base their work on rich theoretical foundations, albeit of very diverse kinds.
From page 3...
... Thus, understanding how chemical reactions take place in the crowded and highly organized molecular environment of the cell, or how physical variables like temperature and concentration gradients affect and are affected by living processes (for example, during development, or in the cell cycle or circadian cycle, when the instructions encoded by DNA are manifested in physical processes) , is a major challenge of biological research.
From page 4...
... Evolution, for example, can be viewed as a process whereby selection of variant genomes is affected by the information provided by the environment. In this view, the information defining the relevant environmental variables is partly encoded in the genome of the adapted organisms by the process of selection, and evolution is thus a process of selective memory in molecular form stored in the genomes of living organisms.
From page 5...
... The ability of living systems to pass on the directions for reproducing themselves and for surviving in the environments where those offspring will find themselves is fundamental to the living state, and it is more than a loose metaphor to say that organisms' genomes represent an imprint of past environmental conditions, history, and the selection pressures on the ancestors of organisms. The sequences of the genome are not the only records of past conditions; the ways in which those sequences are put to use are also affected by other past conditions that are carried forward by living systems -- from stable physiological states, to imprinted DNA that modifies gene expression, to memories stored in the brain and nervous system, and behaviors remembered and taught to descendants.
From page 6...
... The living world presents a vast reservoir of biological solutions to many practical challenges, and biological systems can inspire innovation in many fields. The many ways that basic biological research contributes to medicine are very familiar, but basic biology can also contribute to advances in fields as diverse as food, fishery, and forest production; pest management; resource management; conservation; transportation; information processing; materials science; and engineering.
From page 7...
... Increased attention to the theoretical and conceptual components of basic biology research has the potential to leverage the results of basic biology research and should be considered as a balance to programs that focus on mission-oriented research. Finding 2 Biologists in all subdisciplines use theory but rarely recognize the integral and multifaceted role that theory plays in their research and therefore devote little explicit attention to examining their theoretical and conceptual assumptions.
From page 8...
... Proposals that break new ground can face difficulty in attracting funding, for example those that cross traditional subdisciplinary boundaries, take a purely theoretical approach, or have the potential to destabilize a field by challenging conventional wisdom. Such proposals are likely to be perceived as "high-risk" in that they are likely to fail.
From page 9...
... Proposals that challenge conventional theory require not only that the originality and soundness of the theoretical approach be evaluated but also that the biological data being used are appropriate and the question being asked is significant. Finding 4 Technological advances in arrays, high-throughput sequencing, remote sensing, miniaturization, wireless communication, high-resolution imaging, and other areas, combined with increasingly powerful computing resources and data analysis techniques, are dramatically expanding biologists' observational, experimental, and quantitative capabilities.
From page 10...
... Finding 5 To get the most out of large and diverse data sets, these will need to be accessible and biologists will have to learn how to use them. While technology is making it increasingly cost-effective to collect huge volumes of data, the process of extracting meaningful conclusions from those data remains difficult, time-consuming, and expensive.
From page 11...
... This process of building community databases is well underway in many areas of biology, genomics being a prominent example, but the specialized databases developed by one research community may be unknown or inaccessible to researchers in other fields. Significant resources are needed to maintain, curate, and interconnect biological databases.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.