Skip to main content

Currently Skimming:

Summary
Pages 1-10

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... Lidar uses the laser radiation that is scattered by aerosol particles to determine some property of the aerosol. The major types of lidar currently relevant to biological standoff detection are elastic-backscatter lidar, ultraviolet-laser-induced fluorescence lidar, high-spectral-resolution lidar, Doppler lidar, differential-scatter lidar, and depolarization lidar.
From page 2...
... Standoff detection systems can be highly sensitive to various features in the atmosphere, such as clouds, dust, and the like. A military unit might react to information that a plume was approaching without knowing whether it was a natural aerosol plume, a dust storm, some other phenomenon, or an actual threat; soldiers might be ordered repeatedly to don personal protective equipment, although no biological threat is present, and this would reduce their operational effectiveness.
From page 3...
... DOD does not have an adequate set of tools to test biological standoff detection systems fully under both laboratory and field conditions and at component, subsystem, and full-system levels and then to correlate the results. It has invested in developing test facilities for standoff systems that can detect plumes, but the facilities are not suitable for standoff experiments requiring containment, although some may have limited containment capabilities.
From page 4...
... Findings and Recommendations The findings and recommendations presented below are intended to provide DOD and the office of the Product Director for Test Equipment, Strategy, and Support with a clear path to developing a robust process for testing and evaluation of biological standoff detection systems. FINDING: The Department of Defense requires an integrated approach to development, testing, and evaluation of biological standoff detection systems.
From page 5...
... Such measurement capability is critical for understanding how aerosol particles contribute to the overall signal detected by a standoff system. RECOMMENDATION: The Department of Defense should develop an integrated framework for test and evaluation of biological standoff detection systems that includes modeling and simulation; uncertainty quantification; and laboratory, tunnel, and open-air testing.
From page 6...
... One critical issue that must be resolved before a BSL-3 facility is built is the impact of other effects on the detection signal.10 An integrated T&E protocol must be an essential part of decision making regarding a large-scale BSL-3 chamber for testing standoff detectors. The design and characteristics of a BSL-3 facility would depend on the understanding gained from other aspects of the integrated T&E approach and on the identified knowledge gaps that could not be filled by existing facilities.
From page 7...
... The likelihood that additional T&E capabilities are needed depends on whether the goal of the standoff detection system is to detect an aerosol plume, to detect a plume and determine whether it contains aerosol of biological origin or not, to detect a plume and determine whether its signature is biological and human-made, or to detect a plume and identify its signature as a BWA. Regardless of the biological standoff detector's performance requirements, laboratory testing will be required to establish correlations between BWAs and surrogates.
From page 8...
... The annual Joint Conference on Standoff Detection for Chemical and Biological Defense held in Williamsburg, Virginia, publishes its proceedings, and the standoff detection community should present results at other conferences and publish in peer-reviewed literature. Because the field of biological standoff detection continues to evolve, the T&E community would benefit from a scientific advisory board composed of independent engineers and scientists to provide continuing direction and integration of the science and technology, development, and operational communities.
From page 9...
... Finally, greater interaction between the biological point detection and standoff detection communities is urged. Analysis of the concept of operations for either kind of detection program suggests that exchange is crucial during T&E, inasmuch as information from the deployed systems must be exchanged to achieve detection for warning and protection.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.