Skip to main content

Currently Skimming:

Targeted Polymeric Nanotherapeutics--Jeff Hrkach
Pages 17-24

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 17...
... to translate innovative research conducted at the Massachusetts Institute of Technology (MIT) and Harvard Medical School into novel, targeted, polymeric nanotherapeutics.
From page 18...
... Their particle size would result in very fast clearance by the body's defense mechanisms or could potentially pose a significant safety risk if they were to lodge in capillary beds in the heart or lungs. Nanoparticlebased drug-delivery systems, in which particle sizes generally range from about 20 to 200 nanometers, are being investigated for delivering therapeutic agents, imaging diseased tissues or organs, and sensing the effectiveness of drug delivery or the status of disease.
From page 19...
... By encapsulating doxorubicin in PEGylated liposome nanoparticles, DOXIL allows for longer circulation times than the drug has in its free, unencapsulated state, in fact long enough for the particles to diffuse into and deliver doxorubicin to the tumor vasculature. A potential downside of nanoparticle-based drug-delivery systems is that they can deliver more drug to certain parts of the body than the free drug would normally deliver, which can result in either new side effects or an exacerbation of existing side effects.
From page 20...
... (BIND) , a biopharmaceutical company that was founded upon the research of two pioneers in nanoparticle drug delivery, Professor Robert Langer of MIT and Professor Omid Farokhzad of Brigham and Women's Hospital of the Harvard Medical School, has developed methods of engineering targeted nanoparticles composed of biodegradable and biocompatible polymers with precise biophysicochemical properties optimized to deliver drugs for specific therapeutic applications (Gu et al., 2008)
From page 21...
... Surface Functionalization Surface functionalization imparted by a PEG component shields the targeted nanoparticles from MPS immune clearance, while providing an attachment site for the targeting ligand on the particle surface at precise, controlled levels through proprietary linkage strategies. A key to the successful development of BIND targeted nanoparticles is the optimization of the nanoparticle surface, which requires a precise balance between the targeting ligand and PEG coverage so the nanoparticle surface is masked enough to provide circulation times long enough to reach the disease site and enough targeting ligand on the surface to effectively bind to the target cell-surface receptors.
From page 22...
... Since its inception in early 2007, BIND has undertaken a combinatorial optimization approach resulting in a number of enabling improvements to nanoparticle formulation, as well as the nanoparticle production process to meet the needs of its lead targeted oncology candidate. The optimization approach includes evaluating the performance of nanoparticles using in vitro cell-based assays and in vivo preclinical testing, as well as several chemistry, manufacturing, and controls (CMC)
From page 23...
... For BIND targeted polymeric nanotherapeutic drug candidates based on improving the performance of existing marketed drugs, the clinical testing period is likely to be shorter than for a completely new drug candidate, because the history and data established for the existing drug provide valuable reference points for BIND and the FDA. Nevertheless, several clinical studies are required, all CMC requirements must be met, and the nanoparticle production process must be scaled up to the kilogram level to supply the drug for clinical studies and ultimately, if successful, to supply the approved, marketed drug to doctors and patients.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.