Skip to main content

Currently Skimming:

4 Review of High-Priority Research Topics, Research Needs, and Gap Analysis
Pages 53-92

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 53...
... implications of nanotechnology. Although the committee perceived the NNI document as falling short of its aim of defining a research strategy, elements of Section II would be important for future development of a federal research strategy.
From page 54...
... . The last section of the chapter discusses the committee's assessment of the current distribution of federal investment in nanotechnology-related EHS research; it became clear to the committee when it evaluated the NNI document that its perception of the balance of relevant research among the five research categories differed substantially from the NNI's perception (see p.
From page 55...
... However, the committee believed that the lists were incomplete, in some cases missing elements crucial for progress in understanding the EHS implications of nanomaterials or not recognizing common research threads across research categories. For example, the issue of environmental exposure received insufficient emphasis in the exposure-assessment discussion although it was addressed in the nanomaterials in the environment section.
From page 56...
... For example, in the measurement and characterization discussion, the development of a subangstrom-resolution microscope was said to fulfill the need "to detect nanomaterials in biological matrices." In another category, human health, it was the committee's expert judgment that more than 50% of the inventoried projects1 describe research directly relevant to therapeutics rather than to any of the research needs listed as relevant to potential EHS risks related to nanomaterials. The discussion of risk management, for example, considered economists who were collating the anticipated size of the markets for nanotechnology as addressing needs in risk management.
From page 57...
... Both types of research need to be considered in making pragmatic decisions on directing limited resources to address a specific set of challenges. For example, many of the research needs and topics listed in the instrumentation, metrology, and analytic methods category are relevant to EHS risk assessment and management, but without a means of distinguishing research with high and low value in addressing potential risks, projects of questionable
From page 58...
... That may accelerate progress in cancer research and will undoubtedly advance knowledge of nanomaterial-biologic interactions that are relevant to potential risks posed by specific nanomaterials, but it will not contribute directly to the body of knowledge needed to ensure protection of public health and the environment from potential risks posed by nanotechnology and its products. In the detailed assessment of the NNI document that follows, the committee concluded that the current research portfolio does not address the most rudimentary problems in environmental, health, and safety.
From page 59...
... But the likelihood that some nanomaterials can cause harm by virtue of their nanoscale structure places a much greater emphasis on aspects of nanomaterials not previously considered important. The challenges in instrumentation, metrology, and analytic methods for identifying, assessing, and managing nanotechnology EHS effects are threefold: establishing the usefulness of methods currently used to assess risk, translating existing methods to address risk (a process of method bridging)
From page 60...
... . However, the breadth of many of the research needs is so great that it is difficult to understand how they will be useful in practice for guiding a nanotechnology-related EHS research strategy.
From page 61...
... 13 of the NNI document focus on single-molecule fluorescence. Molecular-level interaction of nanomaterials with cells is interesting, but it does not directly concern detection of nanomaterials in biologic matrices and has little relevance to the practical needs for nanotechnology-related EHS research.
From page 62...
... Information on a nanomaterial's physical and chemical properties is critical for enabling a general understanding of structure-function relationships that will guide future nanotechnology-related EHS research. It is a long-range and exploratory research need, but it is highly relevant to the potential safety or harmfulness of increasingly sophisticated engineered nanomaterials and should form a key component of a strategic research program.
From page 63...
... This should remain a high priority research need and receive sufficient attention and support to ensure timely and relevant progress. What is missing from the strategy document is an assessment of relative importance: What standardization and metrics are suitable for risk assessment and management?
From page 64...
... The funded projects are important, and they represent a large research investment that broadly advances nanoscience and nanotechnology; but they do not necessarily increase our ability to identify, assess, and manage the potential EHS effects of engineered nanomaterials. Largely missing are projects that directly advance both immediate applied research and long-range fundamental knowledge specifically directed towards addressing nanotechnology-related risk research.
From page 65...
... that need to be present in a federal research strategy. The "Summary of BalanceAssessment for Instrumentation, Metrology, and Analytical Methods Category" (p.
From page 66...
... The committee reviewed the adequacy of the nanomaterials and human health research section in the context of its completeness, accuracy, and ability to address important EHS issues for each of the stakeholders by addressing the questions posed in Box 4-1. Evaluation and Assessment The NNI document identifies five broad, inclusive high-priority research needs related to nanomaterials and human health (NEHI 2008, see Figure 5, p.
From page 67...
... . The NNI document should articulate the research required to address each of those steps.
From page 68...
... where feasible, it would be prudent to identify activities in each category that complement and influence those in other categories in an effort to promote research coordination. For example, studies addressing research needs in nanomaterials and human health would benefit from a focus on occupationally or environmentally relevant materials, exposure levels, and exposure routes on the basis of well-characterized nanomaterials (research that is addressed in the instrumentation, metrology, and analytic methods category and the human and environmental exposure assessment category)
From page 69...
... . More than 50% of the projects listed for human health target research directly relevant to therapeutics rather than assessing the potential EHS risks posed by nanomaterials.
From page 70...
... "While there is a low number of projects in this priority research need, this assessment does not capture applicable research in other areas nor many additional research efforts on testing schemes that were not captured by the gap analysis, so a determination of future priorities based on this analysis may be misleading" (p.
From page 71...
... The gap analysis resulted in the NNI's overstating the relevance of therapeutic studies to the identified research needs and not fairly representing the paucity of projects that truly address the potential EHS risks posed by nanomaterials. Although most of the therapeutic studies are focused on developing novel strategies for treating cancer and other ailments that deserve the attention of scientists and clinicians, they will not directly contribute to the body of knowledge needed to ensure protection of public health and the environment from potential risks posed by nanotechnology and its products.
From page 72...
... have been developed for myriad contaminants and used successfully in ecologic risk assessment. Quantifying the influence of nanoscale structure and suspension characteristics (for example, particle size, shape, surface chemistry, and aggregation rate)
From page 73...
... The NNI document identified five research needs in the category of Nanomaterials and the Environment (NEHI 2008, Figure 7, p.
From page 74...
... While some bioavailability and mechanistic toxicity testing should be a high priority, the committee cautions against extensive toxicity testing without fully understanding environmental fate and transport processes necessary to quantify exposure. Effects characterization without an adequate understanding of environmental exposure may result in resources being expended on research that does not contribute to ecologic risk assessment or facilitate extension to higherlevel ecosystem effects.
From page 75...
... To apply current knowledge on materials of natural origin to an understanding of risks posed by engineered nanomaterials, more research is needed to understand how the physicochemical properties and toxicity of natural and engineered nanomaterials differ (see discussion of research gaps below)
From page 76...
... Although the research strategy appears to reflect an important collection of existing federally funded research, there are several gaps in the identified research needs: • The strategy document does not specifically identify the need for studying naturally occurring or incidental nanoparticles that have similar structures or that may be identical with manufactured nanomaterials. • The document does not identify development of protocols to evaluate nanomaterial loss from products as a research need despite an apparent trend
From page 77...
... • Methods for identifying nanomaterial sources, such as isotopic "fingerprinting" techniques, and modeling techniques to track movement of nanoparticles in the environment are needed. • Research to assess the potential environmental "collateral damage" associated with nanomaterial fabrication needs to be clearly linked to life-cycle analysis mentioned in the NNI document.
From page 78...
... Human and Environmental Exposure Assessment Introduction For nanomaterials to present a risk to human health or ecosystems, both exposure and hazard must exist. Without knowledge about exposure potential at some point in the life cycle of nanomaterials, it is not possible to assess risk appropriately or to implement well-founded risk-management practices.
From page 79...
... Evaluation and Assessment The NNI document identified five research needs in the category of Human and Environmental Exposure Assessment (NEHI 2008, Figure 9, p.
From page 80...
... • Research on routes of environmental exposure, including commercial trends and the potential for nanomaterial penetration into conventional material markets, with an assessment of the unintended and associated environmental losses. • Development of methods of identifying environmental "hot spots," including fundamental studies of nanoparticle movement through the environment and interactions with known environmental pollutants.
From page 81...
... Because ecologic exposures may be more difficult to assess than occupational exposures because there are more uncontrolled variables, it is important that environmental exposure research be a priority, and greater recognition of the commonalities of this research need to both the Human and Environmental Exposure Assessment and the Nanomaterials in the Environment categories is needed. The research priorities described in the NNI document will potentially support environmental health and safety research needs, but they are largely insufficient to allow for rigorous exposure assessment.
From page 82...
... . Risk-Management Methods Introduction By including risk-management methods as one of its five research categories, the 2008 NNI document recognizes that research on risk management can not only broaden available options but also inform risk-assessment research.
From page 83...
... Evaluation and Assessment The NNI document lacks a rationale for the selection of research needs and assignment of specific projects related to risk-management methods. That is evident from the statement on p.
From page 84...
... In reviewing this research category, the committee compared the description of research and research needs in risk-management methods in the 2006 NNI report with the research needs, listed projects, and text discussion on riskmanagement research in the 2008 NNI document. Research gaps were identified through the comparison and with expert judgment, and the evaluation of priorities was based on the descriptions in the 2008 document.
From page 85...
... For example, research need 3, "Develop risk characterization information to determine and classify nanomaterials based on physical or chemical properties," implies development of a banding or other screening-level categorization of nanomaterials for risk-management purposes on the basis of readily available physical or chemical characteristics. That is a highly relevant and appropriate research need for risk management that is referred to in the 2006 NNI report.
From page 86...
... In the broader summary of research needs on p. 46, the 2008 NNI document identifies three major risk-management research gaps to be addressed in the near term: "develop risk characterization information to determine and classify nanomaterials based on physical or chemical properties," "develop nanomaterial-use and safetyincident trend information," and "expand exposure route-specific risk management methods research and life cycle analysis research on the basis of nanomaterial use scenarios expected to present greatest exposure and potential for health or environmental effects." The committee agrees that these seven research priorities, some of which are identical with the research needs mentioned in the document and some not, are reasonable.
From page 87...
... There is inadequate description of the process by which the 24 research needs identified in the 2006 NNI report were culled to the five in the 2008 NNI document. The graphical timeline gives high priority to nearly all research needs, providing little strategic guidance for meeting them within resource constraints.
From page 88...
... The need for the rapid development and validation of effective risk-management methods is great for a set of rapidly emerging technologies like nanotechnology, but the narrow focus on 2006 studies and failure to describe adequately what is meant by the research categories and how projects are to be given priority constitute a failure to develop a strategic plan to meet the need. COMMITTEE'S ASSESSMENT OF CURRENT DISTRIBUTION OF FEDERAL INVESTMENT IN NANOTECHNOLOGY-RELATED ENVIRONMENTAL, HEALTH, AND SAFETY RESEARCH The NNI comments on the distribution of nanotechnology-related EHS research investment by illustrating the amount of money it was spending on each of the five research categories in FY 2006 (see Table 4-1)
From page 89...
... (Only the percentages of projects in each broad category are presented, because the funding of each project was not readily available.) Table 4-2 shows that roughly one-fifth to two-fifths of research projects in the instrumentation, metrology, and analytic methods category and about onethird of projects in the human-health category are directly relevant to understanding the potential risks posed by engineered nanomaterials or would otherwise be reasonably expected to provide data that are directly relevant to EHS evaluation.
From page 90...
... . CONCLUSIONS Cross-cutting observations that are relevant to all research categories in the 2008 NNI strategy document include the following: generally appropriate research needs are identified, priorities among research needs are not clearly articulated, and the gap analysis contributes to overstating the amount of relevant federal research being conducted to support EHS research needs related to nanomaterials.
From page 91...
... As is apparent, this problem was particularly severe with respect to the instrumentation, metrology, and analytic methods category and the human-health category. The extent of the problem is so great that the committee is concerned that the current funding or allocation of funding for EHS research needs related to nanomaterials may not be adequate to address current uncertainties in the manner needed to understand the risks posed by nanomaterials.
From page 92...
... 2007. Pri oritization of Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials: An Interim Document for Public Comment.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.