Skip to main content

Currently Skimming:

4 Putting the New Biology to Work
Pages 65-86

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 65...
... The New Biology is already emerging, but the interdisciplinary, system-level, computationally intensive projects it encompasses fit uneasily within traditional funding opportunities and institutional structures. A piecemeal strategy, with many different agencies funding interdisciplinary projects and investing in various technologies would continue to advance the efforts of some pioneer researchers whose work has enormous promise.
From page 66...
... . That report states that "the objective of a large-scale project should be to produce a public good -- an end project that is valuable for society and is useful to many or all investigators in the field." The report goes on to point out that "large-scale collaborative projects may also complement smaller projects by achieving an important, complex goal that could not be accomplished through the traditional model of single-investigator, small-scale research." The report lists several criteria that characterize ­projects that are best carried out on a large scale, including external coordination and management, a required budget larger than can be met under traditional funding mechanisms, a time frame longer than that of smaller projects, and strategic planning with intermediate goals and endpoints as well as a phase-out strategy.
From page 67...
... Estimating the cost of such an Initiative is beyond the scope of this committee, but for the purpose of providing a relative scale, the Interagency Working Group overseeing the National Plant Genome Initiative estimated that the program would require $1.3 billion to fund its programs from 2003 to 2008 ($260 million/year)
From page 68...
... Many of the foundational technologies and sciences identified as central to New Biology contribute to meeting all four of the critical societal goals. The case for informational technologies is obvious; they will provide the means of disseminating discoveries whether they arise out of research focused on energy, food, environment, or health.
From page 69...
... The lesson of the Human Genome Project is that these advances will spread into the wider scientific community, multiplying the value and increasing the productivity of researchers throughout the life sciences community. Investment in cross-cutting technologies will make it likely that the United States will be the leader in the resulting new industries with all the attendant economic and job creation benefits.
From page 70...
... Fragmentation within and across institutional structures poses a significant barrier to realizing the full potential of the New Biology. Interagency collaboration will be critical for accelerating the emergence of the New Biology.
From page 71...
... Because of the many lessons learned in implementing this inherently interdisciplinary program, the review suggested that the EID program continue to evolve as a model for interagency cooperation and to strive to include other institutes at NIH and other divisions of NSF. Another successful interagency program is the National Plant Genome Initiative (NPGI)
From page 72...
... True interagency collaboration will demand interagency strategic planning (including a commitment to supporting the development of novel, integrated approaches to education) , interagency funding, and interagency evaluation and review.
From page 73...
... had an impact across the life sciences far beyond the sequence data generated, investments in problem-focused projects and foundational technologies and sciences will have similarly profound effects. The HGP had the advantage of a clear and definable endpoint––the complete sequence of the human genome––and a similar endpoint for some of these interdisciplinary and cross-cutting projects may be more difficult to define.
From page 74...
... Interagency funding mechanisms could give universities incentives to create novel interdisciplinary entities that provide the basis both for new research approaches and for new educational strategies. Research universities and academic medical centers have for hundreds of years been structured around departments and colleges that circumscribe specific disciplines and intellectual approaches (National Academies, 2004)
From page 75...
... Hypotheses can be tested and connections across different biological systems discovered using data acquired from the published literature by curation or automated search, transferred from other databases, or inferred from experimental data by various forms of aggregation, classification, clustering, comparison, annotation, or even analogical reasoning. For example, most of the reported assignments of proteins to functional
From page 76...
... The study of complex biological problems typically requires the integration of diverse data sources (Box 4.2)
From page 77...
... The full benefit of the impending revolutions in the life sciences discussed in this report will require a national effort to develop an information infrastructure that would support these applications. a For more information, see the National Science Foundation report, The NEON Strategy (http:// www.neoninc.org/sites/default/files/NEON.Strategy.July2009.Release2_2_0.pdf)
From page 78...
... As argued throughout this report, the fundamental unity of biology means that data generated to develop biofuels are relevant to biomedical researchers and vice versa. Thus, building a system that captures the most possible value from ongoing research is a challenge that must be addressed above the level of any single biological subdiscipline or any one funding agency.
From page 79...
... The New Biology represents an integrated, problem-focused approach to science that is entirely consistent with research on how students learn best. Just as the goal of landing on the moon inspired a generation of students, high visibility projects using biology to solve important problems could provide a platform to engage all students in the process of science, and illustrate the excitement and benefits of using science and engineering to solve problems.
From page 80...
... One of the founding faculty member's HHMI undergraduate education award contributed to developing specific sets of teaching materials. Success depended on finding faculty members with personal commitments to the principles of the courses and willingness to work as a team to build the new courses from scratch.
From page 81...
... Engaging students in the New Biology will require science teachers who understand and can pass on the interdisciplinary nature of science problemsolving. Exciting undergraduate experiences that are science based will not only help attract students into research careers, but also equip those life science majors who choose teaching careers with the disciplinary knowledge and handson experience to teach the New Biology.
From page 82...
... Grants programs could support development of interdisciplinary courses like Harvard's introductory biology courses, or Princeton's integrated science curriculum at other institutions. The National Academies Summer Institute on Undergraduate Education in Biology, created in direct response to a Bio 2010 recommendation, is another approach that could be expanded with additional funding (Box 4.5)
From page 83...
... Since 2004, more than 250 instructors from 82 institutions in 40 states have participated in the Summer Institute including a broad cross-section of faculty from throughout all of biology -- anatomy to zoology -- as well as deans and department chairs, curriculum and laboratory coordinators, lecturers to postdocs. The Summer Institute is supported by the Howard Hughes Medical Institute, the Research Corporation for Science Advancement, the Burroughs Wellcome Fund, the Presidents' Committee of the National Research Council, and the University of Wisconsin–Madison.
From page 84...
... Empowering the New Biology means adding a new layer to the traditional approach; an approach that is purposefully organized around problem-solving; marshalling the basic science, teams of researchers, technologies, and foundational sciences required for the task; and coordinating efforts to ensure that gaps are filled, problems
From page 85...
... The New Biology Initiative would represent a daring addition to the nation's research portfolio, but the potential benefits are considerable: an immensely more productive life sciences research community; new bio-based industries; and, most importantly, innovative means to produce food and biofuels sustainably, monitor and restore ecosystems, and improve human health.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.