Skip to main content

Currently Skimming:

2 Programmatic Issues
Pages 8-18

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 8...
... The scientific community engaged in space exploration research has dwindled as a result of marked reductions in budget funding levels, from approximately $500 million shared equally between life and physical sciences in 2002 to the current level of about $180 million, and the concomitant reduction in the ISS research portfolio, from 966 investigations in 2002 to 285 in 2008.1 Considerable effort will be required to overcome current obstacles and restore the life and physical sciences research program to a committed, comprehensive, and highly visible organizational resource that effectively promotes research to meet the national space exploration agenda. This goal can be best achieved with a portfolio that supports both intra- and extramural programs (i.e., similar to the NIH support of intra- and extramural research)
From page 9...
... To meet these challenges, which span the life and physical sciences, it is essential to develop a long-term, strategic research plan firmly anchored in a broad research community. For such a plan to become a reality, research must be central to NASA's exploration mission and be embraced throughout the agency as an essential tool to achieve future space exploration goals.
From page 10...
... This philosophy is consistent with that embodied in the National Aeronautics and Space Act of 19583 and in the reports Safe Passage4 and A Strategy for Research in Space Biology and Medicine in the New Century.5 Establishing a Stable and Sufficient Funding Base A renewed funding base for fundamental and applied life and physical sciences research is essential for attracting the scientific community that is needed to meet prioritized research objectives. Scientists must have a reasonable level of confidence in the sustainability of research funding if they are to be expected to focus their laboratories, staff, and students on research relevant to space exploration.
From page 11...
... An extramural program increases the intellectual wealth and breadth of innovative crosscutting ideas to stimulate advances in both space exploration capabilities and fundamental scientific discoveries. A robust and sustained extramural research program also ensures that there will be a stable community of scientists prepared to lead future space exploration research.
From page 12...
... To regain a place as a member of the global scientific team in life and physical sciences in space, there is a need for the United States to increase international scientific activities, through interactions with such organizations as, but not limited to, the International Space Station Life Sciences Working Group (ISSLSWG)
From page 13...
... In the physical sciences and engineering, and in many nonmedically related disciplines in the life sciences, junior faculty are expected to develop independent research portfolios upon their academic appointment. Thus, to attract new talent, it is essential to create funding mechanisms targeted specifically to junior faculty.
From page 14...
... Building a program in the life and physical sciences would benefit from ensuring that an adequate number of investigators, including flight and ground-based investigators, are participating in research that will enable future space exploration. Linking Science to Mission Capabilities Through Multidisciplinary Translational Programs Complex systems problems of the type that crewed missions will increasingly encounter will need to be solved with integrated teams that are likely to include scientists from a number of disciplines as well as engineers, mission analysts, and technology developers.
From page 15...
... Beyond meeting the need to provide scientific underpinnings to fulfill future space exploration goals, the space research community represents an ideal foundation around which life and physical scientists and engineers can coalesce to address common goals. Because scientific advances can occur as a result of serendipity, it is important to have life scientists, physical scientists, and engineers working side by side to take full advantage of both planned and serendipitous discoveries.
From page 16...
... A potential strategy that would benefit all three of these research approaches would be the creation of a robust astronaut health study database. The database could be populated retrospectively with currently archived data from the many space research studies that have been conducted, archived data from flight medicine, and available long-term follow-up health data such as the data obtained in the Longitudinal Study of Astronaut Health (LSAH)
From page 17...
... Broad, multidisciplinary teams will be necessary to coordinate and integrate activities across the commercial sector, the space medicine community, and the space operations community. Issues related to the control of intellectual property, technology transfer, conflicts of interest, and data integrity will also have to be addressed.
From page 18...
... As determined by the decadal survey committee from its examination of the highly varied history of these programs, and as commented on in the Augustine Committee Final Report,16 administratively embedding crucial forward-looking elements such as this in larger or operationally focused organizations virtually guarantees that its resources will be swallowed up by other needs. The discussion in this chapter has focused on the essential needs for a successful renewed research endeavor in life and physical sciences -- the development of a credible agenda, the selection of the research most likely to provide value to an optimum range of future missions designs, the crucial inclusion of a translational science component to continuously build bridges between basic science and the development of new mission options, and the necessity of encouraging and then accommodating team science approaches to what are inherently fully multidisciplinary challenges.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.