Skip to main content

Currently Skimming:

Appendix C: Cost and Technical Evaluation of Priority Missions
Pages 331-354

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 331...
... report published in 2006 concluded that "major missions in space and Earth science are being executed at costs well in excess of the costs estimated at the time when the missions were recommended in the National Research Council's decadal surveys for their disciplines. Consequently, the orderly planning process that has served the space and Earth science communities well has been disrupted, and balance among large, medium, and small missions has been difficult to maintain."1 In response to this concern, the same report recommended that "NASA should undertake independent, systematic, and comprehensive evaluations of the cost-to-complete of each of its space and Earth science missions that are under development, for the purpose of determining the adequacy of budget and schedule."2 An extended discussion of cost estimates and of the technology readiness of candidate missions took place during a subsequent NRC workshop concerning lessons learned from past decadal surveys.
From page 332...
... To ensure that the mission concepts were sufficiently mature for subsequent evaluation by the CATE team, the committee commissioned technical studies at leading design centers, including the Jet Propulsion Laboratory, Goddard Space Flight Center, the Johns Hopkins University Applied Physics Laboratory, and Marshall Space Flight Center. The committee's steering group selected concepts to be studied from among those recommended by the panels.
From page 333...
... , to cross-check cost and schedule estimates for internal consistency and risk assessment. • In an integrated fashion, quantify the total threats to costs from schedule growth, the costs of maturing technology, and the threat of costs owing to mass growth resulting in the need for a larger, more costly launch vehicle.
From page 334...
... The CATE process places no cost cap on mission concepts, and hence risk as a function of cost is not considered. Concept maturity and technical risk are evaluated in terms of the ability of a concept to meet performance goals within proposed launch dates with adequate mass, power, and performance margins.
From page 335...
... To be consistent for all concepts, the CATE cost process allows an increase in cost resulting from increased contingency mass and power, increased schedule, increased required launch vehicle capability, and other cost threats depending on the concept maturity and specific risk assessment of a particular concept. All cost appraisals for the CATE process are probabilistic in nature and are based on the NASA historical record and documented project life-cycle growth studies.
From page 336...
... FIGURE C.3  Complexity Based Risk Assessment cost analysis superimposing the cost of a notional mission on historical data of cost versus complexity. A similar analysis can be performed plotting a schedule against complexity.
From page 337...
... ; • Mars Sample Return Lander and Mars Ascent Vehicle (Box C.5) ;7 • Mars Sample Return Orbiter and Earth Entry Vehicle (Box C.6)
From page 338...
...  entry.  Solar Array = 5.0 m2 – Mini‐Probe is jettisoned minutes after EFS entry.  Carrier Spacecraft  Entry Flight System • Time Elapsed Since Heritage System Development  – Study uses Pioneer Venus and Galileo Probe as basis for  several estimates.  • Potential for Carrier Spacecraft Instrument Growth Science Objectives  Key Cost Element Comparison  • Examine the Venus atmosphere  3.0 – Improve understanding of the current state and  Cost Threats evolution of the strong CO2 greenhouse climate  $2.4 B Reserves Es�mated Cost (FY15 $B) • Improve modeling of climate and global change on  Launch Vehicle 2.0 Earth‐like planets  Phase E Costs and Educa�on $1.6 B and Public Outreach • Key science issues addressed:  Pre-launch Ground – Characterize the CO2 greenhouse atmosphere of Venus  Flight System – Characterize the dynamics of Venus's superrotating  1.0 Instruments atmosphere  Project Management/Systems – Constrain surface/atmosphere chemical exchange  Engineering/Mission Assurance Phase A – Determine origin of Venus's atmosphere  0.0 – Understand implications for climate evolution of Earth Project CATE Key Parameters  Cost Risk Analysis S Curve  • Carrier Spacecraft  100 – Visible/Infrared Imager  90 Distribu�on Cumula�ve Probability (%)
From page 339...
... – Heat Flow Experiment  70 Design center es�mate CATE without cost threats – Electromagnetic Sounder  60 – Lunar Laser Ranging  50 – Guest Payload  40 30 – Education/Public Outreach Pancam   20 • Advanced Stirling Radioisotope Generator Surface Power  10 • Launch Mass: 3,572 kg (257 kg individual lander mass)   0 • Launch Date: 2016 (on Atlas V 511)
From page 340...
... • Key science issues addressed:  Phase E Costs and Educa�on and Public $2.2 B Outreach – Searching for extant life on Mars  Pre-launch Ground $2.0 – Searching for evidence of past life on Mars  Flight System – Understanding martian climate history  – Determining the ages of geologic terrains on Mars  $1.0 Instruments – Understanding surface‐atmosphere interactions on  Project Management/Systems Engineering/Mission Assurance Mars  Phase A – Understanding martian interior processes   $0.0 Project CATE Key Parameters  Cost Risk Analysis S Curve  • Model Payload with Sampling/Caching System     100 – Panoramic high resolution stereo imager (on mast)   90 Distribu�on – Near‐Infrared Point Spectrometer    80 CATE es�mate Design center es�mate Cumula�ve Probability (%)
From page 341...
...   – Lack of maturity in SHEC subsystem  – Effect of planetary protection and sample transfer  requirements  • Increased Rover Traverse Speed over Mars Science  Laboratory and Mars Exploration Rover    Science Objectives  Key Cost Element Comparison  $3.0 • Perform in situ science on Mars samples to look for  Cost Threats evidence of ancient life or prebiotic chemistry    $2.4 B Reserves • Collect, document, and package samples for future  Launch Vehicle collection and return to Earth  Es�mated Cost (FY15$B) $2.0 MAX-C Descope Phase E Costs and Educa�on and Public • Key science issues addressed:  concept cost was not estimated by Outreach Pre-launch Ground – Searching for extant life on Mars  project.
From page 342...
... Phase E Costs and Educa�on and Public • Launch collected samples into Mars orbit for retrieval by  $3.0 Outreach the Mars Sample Return Orbiter  $2.5 B Pre-launch Ground • Key science issues addressed:  $2.0 Flight System – None  Instruments $1.0 Project Management/Systems Engineering/Mission Assurance Phase A $0.0 Project CATE Key Parameters  Cost Risk Analysis S Curve  • Instrumentation:     100 – Lander:  3 lander cameras, 1 robotic arm camera, 1  90 Distribu�on CATE es�mate sample insertion camera, 2 descent cameras  80 Design center es�mate Cumula�ve Probability (%) – Fetch Rover: 4 navigation cameras, 4 hazard cameras  70 CATE without cost threats 2 60 • 1 x 2.8 m Diameter (6.2 m )
From page 343...
...   $2.1 B Es�mated Cost (FY15 $B) $2.0 Launch Vehicle • Return the EEV to Earth  $1.8 B Phase E Costs and Educa�on • Provide a communications relay between Earth and the  and Public Outreach Mars Sample Return Lander  Pre-launch Ground • Build Mars Returned‐Sample Handling facility  Flight System $1.0 • Key science issues addressed:  Instruments – None  Project Management/Systems Engineering/Mission Assurance Phase A $0.0 Project CATE Key Parameters  Cost Risk Analysis S Curve  • Payload     100 – Optical Navigation Camera Assembly  90 Distribu�on CATE es�mate – Sample Capture and Transfer System  80 Design center es�mate Cumula�ve Probability (%)
From page 344...
... – Determining the state of Io's mantle  $1.0 Phase E Costs and Educa�on and Public Outreach – Modeling Io's tidal heating mechanisms  $0.8 Pre-launch Ground – Modeling tectonic processes on Io  Flight System $0.6 – Understanding the interrelation between volcanic,  Instruments atmospheric, plasma torus, and magnetospheric mass‐  $0.4 Project Management/Systems Engineering/Mission Assurance and energy‐exchange processes  $0.2 Phase A – Determining whether Io's core is generating a magnetic  $0.0 field  Project CATE – Characterizing Io's surface composition  – Improving understanding of the Jupiter system  Key Parameters  Cost Risk Analysis S Curve  100 • Flight System Payload    90 Distribu�on – Narrow Angle Imager  CATE es�mate 80 – Thermal Mapper  Design center es�mate Cumula�ve Probability (%) 70 CATE without cost threats – Ion and Neutral Mass Spectrometer  60 – Flux Gate Magnetometer  50 • Powered by Two ASRGs   40 • Launch Mass: 1,946 kg  30 • Launch Date: 2021 on Atlas V 401  20 • Orbit: 46‐degree Inclined Orbit at Jupiter with Multiple  10 Io Flybys  0   0.5 1.0 1.5 2.0 Es�mated Cost (FY15 $B)
From page 345...
... 70 CATE without cost threats – Chemistry:  Vis‐IR Imaging Spectrometer, Ultraviolet  60 Spectrometer, and Ion and Neutral Mass Spectrometer  50 – Geology:  Thermal Instrument, Narrow Angle Imager,  40 Wide and Medium Angle Imager  30 – Particles and Fields:  Magnetometer, Particle and  20 Plasma Instrument  10 • Five Multi‐Mission Radioisotope Thermoelectric  0 2.0 3.0 4.0 5.0 6.0 7.0 Generators   Es�mated Cost (FY15 $B) • Launch Mass: 4,745 kg  • Launch Date: 2020 (on Atlas V 551)
From page 346...
... 70 CATE without cost threats – Thermal Imager  60 – Ultraviolet Spectrometer  50 – Gamma Ray Spectrometer  40 – Neutron Spectrometer  30 20 – Lidar  10 • Two Advanced Stirling Radioisotope Generators  0 • Launch Mass:  1,176 kg  0.5 1.0 1.5 2.0 • Launch Date:  2019 (on Atlas V 411)   Es�mated Cost (FY15 $B)
From page 347...
... 70 CATE without cost threats • Carrier‐Relay Spacecraft Bus  60 • Two Advanced Stirling Radioisotope Generators  50 • Launch Mass:  957 kg  40 • Launch Date:  2,027 (on Atlas V 401)   30 • Probe:  Direct Entry to Saturn, Carrier‐Relay:  Saturn  20 10 Flyby  0   0.5 1.0 1.5 2.0 Es�mated Cost (FY15 $B)
From page 348...
...   Science Objectives  Key Cost Element Comparison  $8.0 • Explore Titan as an Earth‐like system     Cost Threats $6.7 B • Examine the organic chemistry of Titan's atmosphere  $7.0 Reserves Project estimate • Explore Enceladus and Saturn's magnetosphere for clues  shown includes $6.0 CATE estimate Launch Vehicle to Titan's origin and evolution  of ESA elements Es�mated Cost (FY15 $B)
From page 349...
... • Observe interactions between Enceladus and the Saturn  Phase E Costs and Educa�on and Public Outreach system and explore the surfaces and interiors of Saturn's  $1.0 Pre-launch Ground moons  Flight System • Key science issues addressed:  Instruments – Investigating the nature of Enceladus's cryovolcanic  $0.5 Project Management/Systems activity   Engineering/Mission Assurance – Providing improved measurements of plume gas and  Phase A $0.0 dust  Project CATE – Measuring tidal flexing, magnetic induction, static  gravity, topography, and heat flow   Key Parameters  Cost Risk Analysis S Curve  100 • Payload     90 Distribu�on – Medium Angle Imager  CATE es�mate 80 Design center es�mate – Thermal Imaging Radiometer  Cumula�ve Probability (%) 70 CATE without cost threats – Mass Spectrometer  60 – Dust Analyzer  50 – Magnetometer  40 • Three ASRGs  30 • Launch Mass: 3,560 kg  20 10 • Launch Date: 2023 (on Atlas V 521)
From page 350...
... noise to 0.1 nT background  • System Mass and Power  – Low‐mass and ‐power margins for this phase  – High mass multiplying factor from large propulsion  delta‐V requirements  Science Objectives  Key Cost Element Comparison  $4.0 • Investigate the interior structure, atmosphere, and    Cost Threats composition of Uranus  $3.4 B Reserves • Observe the Uranus satellite and ring systems  $3.0 • Key science issues addressed:  Launch Vehicle Es�mated Cost (FY15 $B) – Determining atmospheric zonal winds and structure  Phase E Costs and Educa�on – Understanding Uranus's magnetosphere and interior  $1.9 B and Public Outreach $2.0 Pre-launch Ground dynamo  – Determining noble gas abundances and isotopic ratios  Flight System of H, C, N, and O within Uranus's atmosphere  Instruments $1.0 – Determining the internal mass distribution of Uranus  Project Management/Systems – Determining horizontal distribution of atmospheric  Engineering/Mission Assurance Phase A thermal emission  $0.0 – Observing Uranus's satellites  Project CATE Key Parameters  Cost Risk Analysis S Curve  • Orbiter Payload    100 – Wide‐ and Narrow‐Angle Imagers  90 Distribu�on CATE es�mate – Visible/Near‐Infrared Mapping Spectrometer  80 Design center es�mate Cumula�ve Probability (%)
From page 351...
... • Sensitivity of Launch Opportunities to System Mass  Magnetometer Boom – More trajectory analyses recommended  • High Magnetic Cleanliness for Orbiter  – Demanding requirement to reduce spacecraft magnetic  noise to 0.1 nT background  Science Objectives  Key Cost Element Comparison  $3.0 • Investigate the interior structure, atmosphere, and    $2.7 B Cost Threats composition of Uranus  Reserves • Observe the Uranus satellite and ring systems  Launch Vehicle • Key science issues addressed:  Es�mated Cost (FY15 $B) $2.0 – Determining atmospheric zonal winds and structure  Phase E Costs and Educa�on and Public Outreach Uranus No SEP – Understanding Uranus's magnetosphere and interior  concept cost was Pre-launch Ground not estimated by dynamo  project.
From page 352...
... • Key science issues addressed:  $1.0 B $1.0 Phase E Costs and Educa�on and – Determining the physical and chemical conditions in the  Public Outreach $0.8 Pre-launch Ground outer solar system during its formation  – Unraveling the history of the early solar system through  $0.6 Flight System age dating of cometary grains  Instruments – Elucidate the hypothesis that comets are the purveyors  $0.4 Project Management/Systems of water and organics throughout the solar system  $0.2 Engineering/Mission Assurance Phase A – Understanding the nature of giant‐planet cores    $0.0 Project CATE   Key Parameters  Cost Risk Analysis S Curve  • Payload     100 90 Distribu�on – Brush‐Wheel Sample Acquisition System  CATE es�mate 80 – Sample Return Vehicle  Design center es�mate Cumula�ve Probability (%) 70 CATE without cost threats – Sample Monitoring: Sample Imagers, Temperature and  60 Pressure Sensors  50 – Site Characterization: Narrow Field Visible Imager, Wide  40 Field Visible Imager, Thermal Infrared Imager  30 • 17.4 kW (1 AU Beginning of Life)
From page 353...
... The CATE process estimated mission costs that are considerably higher than the cost estimates provided by the design center study teams. The reason is that project-derived cost estimates are typically done using a bottomup or so-called grass roots approach, and beyond standard contingencies they do not include probabilities of risk incurred by necessary redesigns, schedule slips, or launch vehicle growth.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.