Skip to main content

Currently Skimming:

Appendix L: TA09 Entry, Descent, and Landing Systems
Pages 244-266

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 244...
... NASA's draft roadmap for TA09 defines entry as the phase from arrival through hypersonic flight, with descent being defined as hypersonic flight to the terminal phase of landing, and landing being from terminal descent to the final touchdown. EDL technologies can support all three of these mission phases or just one or two of them.
From page 245...
... While this mission beneficially stresses and challenges EDL technology development, it would be prudent to consider the benefit of advanced EDL technologies to other possible applications to ensure that the technology
From page 246...
... In a sense, increasing mass delivery to a planet surface is "the name of the game" for EDL technology because it may enable missions that are presently impossible (such as a human Mars landing) and/or provide enhancements such as more sophisticated science investigations and sample return capability for currently planned missions.
From page 247...
... After careful consideration, the panel also designated four additional technologies as high-priority technologies. 2 The four technologies selected based on their QFD scores were: 9.4.7 GN&C Sensors and Systems, 9.1.1 Rigid Thermal Protection Systems, 9.1.2 Flexible Thermal Protection Systems, and 9.1.4 Deployable Hypersonic Decelerators.
From page 248...
... Flexible Thermal Protection Systems 9.1.4. Deployable Hypersonic Decelerators 9.4.5.
From page 249...
... . However, advanced EDL technology could lead to new vehicles with improved capabilities for returning crew or payloads from the ISS, and return flights from the ISS could provide flight testing opportunities for EDL technologies.
From page 250...
... Flexible Thermal Protection Systems ● ● ○ ○ ● H 9.1.4. Deployable Hypersonic Decelerators ● ● ○ ○ H 9.4.5.
From page 251...
... GRM ID# Identifier Destination 1 L S Y Y N Apollo, Orion, Commercial Crew Human Earth Low L/D Return 2 L S Y Y N Shuttle, Xcor H Human Earth High L/D Return 3 L S Y Y N SpaceX Dragon Human Earth Retro Return 4 L S Y Y N SpaceX Dragon Earth Cargo Low L/D Return 5 L S Y Y N Dreamchaser Earth C Earth Cargo High L/D Return 6 L S Y Y N Earth Cargo Retro Return 7 L S Y Y N Hayabusa, Stardust, Genesis Robotic Earth Capsule Return 8 L S Y Y N X-37 R Robotic Earth High L/D Return 9 L S Y Y N Masten, Armadillo Robotic Earth Retro Return 10 L S Y Y N H Human Mars 11 L S Y Y N C Cargo Mars 12 L S Y Y N Viking, Phoenix, Pathfinder, MER Mars Robotic Mars 13 L H Y Y N DS2 R Penetrator Mars Mars Airplane, MGS, Odyssey 14 E - Y Y N Robotic Entry Mars 15 L S N Y N Apollo, Altair H Human Lunar 16 L S N Y N Altair C Cargo Lunar Lunar 17 L S N Y N Lunar Sample Return Robotic Lunar R 18 L H N Y N Lunar-A Penetrator Lunar L S N N N 19 H Human Asteroid / Small Body Asteroid / 20 L S N N N NEAR Robotic Asteroid / Small Body R Small Bodies 21 L H N N N Hayabusa Penetrator Asteroid / Small Body 22 L S N N N Stardust Robotic Comet Sample Return 23 L S N N N Comet R Robotic Comet Lander 24 L H N N N Deep Impact Penetrator Comet 25 E - Y Y Y Huygens, Titan Balloon Robotic Venus/Titan Entry 26 L H Y Y Y Pioneer Venus, Venera 7 Venus / Titan R Robotic Venus/Titan Lander 27 L H Y Y Y Robotic Venus/Titan Penetrator 28 L S N Y Y Robotic Icy Moon Lander Icy Moon R 29 L H N Y Y Penetrator Icy Moon 30 L S N Y Y BepiColombo Robotic Mercury Lander Mercury R 31 L H N Y Y Mercury Penetrator 32 E - Y Y Y Galileo Giant Planet R Robotic Saturn / Jupiter Entry 33 E - Y Y Y Robotic Uranus/Neptune Entry 34 L S Y Y Y Outer Planet R Robotic Uranus/Neptune Lander 35 L H Y Y Y Penetrator Uranus/Neptune FIGURE L.4 Generic reference missions for TA09 Entry, Descent, and Landing Systems.
From page 252...
... 252 NASA SPACE TECHNOLOGY ROADMAPS AND PRIORITIES EDL TECHNOLOGY MAPPING EDL MISSION LIST High Priority Medium Low Atmosphere and Surface Characterization Instrumentation and Health Monitoring Flexible Thermal Protection Systems Attached Deployable Decelerators Deployable Hypersonic Decelators Rigid Thermal Protection Systems Trailing Deployable Decelerators System Integration and Analysis Egress & Deployment Systems Rigid Hypersonic Decelerators EDL Modeling and Simulation Supersonic Retropropulsion GNC Systems and Sensors Touchdown Systems Small Body Systems Separation Systems Propulsion Systems GRM ID# Identifier 1 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Human Earth Low L/D Return 2 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Human Earth High L/D Return 3 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Human Earth Retro Return 4 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Earth Cargo Low L/D Return 5 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Earth Cargo High L/D Return 6 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Earth Cargo Retro Return 7 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Robotic Earth Capsule Return 8 Y Y Y Y Y Y Y Y Y Y Y Y - - Y - Robotic Earth High L/D Return 9 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Robotic Earth Retro Return 10 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Y Human Mars 11 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Y Cargo Mars 12 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y - Y Robotic Mars 13 Y Y Y Y Y Y Y Y Y Y Y - - - Y - Penetrator Mars 14 Y Y Y Y Y Y Y Y Y Y Y - - - Y - Robotic Entry Mars 15 Y - - - Y Y Y Y - - - Y - Y Y - Y Human Lunar 16 Y - - - Y Y Y Y - - - Y - Y Y - Y Cargo Lunar 17 Y - - - Y Y Y Y - - - Y - Y Y - Y Robotic Lunar 18 Y - - - Y Y Y Y - - - Y - - Y - Penetrator Lunar 19 Y - - - Y Y Y Y - - - Y Y Y Y - Y Human Asteroid / Small Body 20 Y - - - Y Y Y Y - - - Y Y Y Y - Y Robotic Asteroid / Small Body 21 Y - - - Y Y Y Y - - - - Y - Y - Penetrator Asteroid / Small Body 22 Y - - - Y Y Y Y - - - Y Y Y Y - Y Robotic Comet Sample Return 23 Y - - - Y Y Y Y - - - Y Y Y Y - Y Robotic Comet Lander 24 Y - - - Y Y Y Y - - - - Y - Y - Penetrator Comet 25 Y Y Y Y Y Y Y Y Y Y Y - - - Y - Robotic Venus/Titan Entry 26 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y - Y Robotic Venus/Titan Lander 27 Y Y Y Y Y Y Y Y Y Y Y - - - Y - Robotic Venus/Titan Penetrator 28 Y - - - Y Y Y Y - - - Y - Y Y - Y Robotic Icy Moon Lander 29 Y - - - Y Y Y Y - - - - - - Y - Penetrator Icy Moon 30 Y - - - Y Y Y Y - - - Y - Y Y - Y Robotic Mercury Lander 31 Y - - - Y Y Y Y - - - - - - Y - Mercury Penetrator 32 Y Y Y Y Y Y Y Y Y Y Y - - - Y - Robotic Saturn / Jupiter Entry 33 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Y Robotic Uranus/Neptune Entry 34 Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Y Robotic Uranus/Neptune Lander 35 Y Y Y Y Y Y Y Y Y Y Y - - - Y Y Penetrator Uranus/Neptune FIGURE L.5 Mapping of generic reference missions to level 3 technologies for TA09 Entry, Descent, and Landing Systems.
From page 253...
... from the high-temperature and high-shear flow environment experienced during the hypersonic entry phase. Rigid TPS materials are typically separated into two major classes, reusable and non-reusable, and some missions will use a combination of the two.
From page 254...
... Technology 9.1.2, Flexible Thermal Protection Systems Like rigid TPS, flexible TPS can be reusable or ablative (or some combination thereof)
From page 255...
... Deployable decelerators, which could use flexible or rigid components, would provide the ability to utilize much larger drag areas and novel vehicle shapes relative to traditional rigid decelerators, because they are not limited to the size of the spacecraft. Deployable decelerators could enhance the drag area of the spacecraft during the early phase of EDL, thereby reducing the altitude required and increasing the time available to establish the landing configuration.
From page 256...
... Technology 9.4.6, Instrumentation and Health Monitoring NASA draft roadmap for TA09 notes that, "Entry instrumentation for both engineering data and vehicle health monitoring provides a critical link between predicted and observed performance of entry vehicle systems." This is particularly true for entry thermal protection systems because complete simulation of the entry environment is impossible in ground-based test facilities. Hence, while ground-based test facilities are indispensable in develop ing thermal protection systems, the complete, rigorous validation of TPS design algorithms can only be achieved through comparison of predictions with flight data.
From page 257...
... The panel overrode the QFD score for this technology to designate it as a high-priority technology. The QFD scores did not fully capture the value of this technology in terms of how widely applicable it is to all EDL mis sions, as well as the contribution it would make to improving the safety and reliability of EDL missions.
From page 258...
... MEDIUM- AND LOW-PRIORITY TECHNOLOGIES One group of medium- and low-priority technologies in TA09 had a lower overall benefit than the high-priority technologies as well as development challenges. Technologies 9.2.2 Trailing Deployable Decelerators, 9.2.1 Attached Deployable Decelerators, 9.1.3 Rigid Hypersonic Decelerators, and 9.2.3 Supersonic Retropropulsion all fell into this category.
From page 259...
... DEVELOPMENT AND SCHEDULE CHANGES FOR THE TECHNOLOGIES COVERED BY EACH ROADMAP The ebb and flow of EDL missions make it difficult for the EDL community to maintain core capabilities and knowledge. EDL technology development requires continuous effort and sustained funding over a number of years in order to be successful and to generate industry participation (Peterson, 2011; Grantz, 2011; Rohrschnedier, 2011)
From page 260...
... If NASA wants future missions that expand current capabilities (to enable new destinations and sample return, for example) , past EDL technologies are not good enough.
From page 261...
... Panel B: Industry I Arthur Grantz, Boeing, focused his presentation on entry from LEO, which he saw as a gap/weakness in the draft roadmap. Just as TPS materials and technologies were "lost" after Apollo, he fears that the same will happen now that the space shuttle has been retired.
From page 262...
... He saw the top technical challenges as follows: deployable and inflatable decelerators (game-changer) , supersonic retropropulsion (game-changer)
From page 263...
... Colin Ake, Masten Aerospace, also discussed the capabilities of Masten Aerospace and how they could contribute to EDL technology development. As with Armadillo Aerospace, he believes that small start-up companies can play a role in helping to test and demonstrate EDL technologies.
From page 264...
... . Since most EDL technologies are single-point failures, it is almost impossible to fly an unproven technology on a science mission.
From page 265...
... Echoing many other presenters, Bishop also emphasized the need to instrument EDL missions. Overall, Bishop believes that the draft roadmap needs a strong GN&C focus.
From page 266...
... 2011. "Thoughts on NASA's Future Investments in EDL Technology," presentation at the National Research Council NASA Technology Roadmaps Panel 6 Workshop, Irvine, Calif., March 23, 2011.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.