Skip to main content

Currently Skimming:


Pages 101-139

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 101...
... Page 101  WHITE PAPER #2 ADDENDUM CASE STUDY: THE COST OF THE FCC RULING ON THE ANN ARBOR CONNECTED VEHICLE ENVIRONMENT
From page 102...
... Page 102  CASE STUDY:   The Cost of the FCC Ruling on the   Ann Arbor Connected Vehicle Environment  On May 3, 2021, the Federal Communications Commission (FCC)   published the final rule related to the use of the 5.850‐5.925 GHz  Band.  This action had two immediate impacts: (1)
From page 103...
...   Page 103      Initial DSRC Deployment and Evolution  The initial connected vehicle deployment was originally launched in 2012, as part of the United States  Department of Transportation (USDOT)  Connected Vehicle Safety Pilot program under USDOT contract  DTFH611C00040.  Governed by the ITS Joint Program Office within USDOT, this project was known at  the time as the Safety Pilot Model Deployment (SPMD)
From page 104...
... Page 104  Collectively, the model deployment was originally designed to determine the effectiveness of DSRC  technology at reducing crashes by evaluating V2V and V2I applications operationally in a real‐world,  concentrated environment; to gauge user acceptance of the technology; and to generate data to  support estimates of safety system effectiveness.   The project included a mix of cars, trucks and transit  vehicles and was the first test of this magnitude of connected vehicle technology in a real‐world,  multimodal, operating environment.   The Safety Pilot Model Deployment was impactful.  The data generated from the model deployment was  critical to supporting National Highway Transportation Safety Administration (NHTSA)  agency decision  regarding connected vehicle communications for safety, and led to the NHTSA Notice of Proposed  Rulemaking ‐ making DSRC‐based V2V technologies standard on all new vehicles (Docket No. NHTSA– 2016–0126)
From page 105...
...   Page 105      element was to expand the infrastructure footprint from the original 25 RSUs in Northeast Ann Arbor to  a total of 75 RSUs deployed throughout the City of Ann Arbor.  The AACVTE deployment was not as straightforward as initially anticipated, however.  Additional  security requirements, an outcome of the rigorous SPMD activities, required replacement of existing  RSUs and OBUs, rather than a simple software update.  This one change alone made the AACVTE  integration activities nearly as complex as standing up the original SPMD.  The cost of this replacement  alone, including both equipment and manpower, was $16.3M.  Again, this was specific to the original 25  RSUs and 2,842 vehicle OBUs.    Ann Arbor Connected Environment   With the operational environment numbering 2,175 DSRC‐equipped vehicles and 75 DSRC‐based RSUs,  the Ann Arbor Connected Environment (AACE) , as it is now known, is the second largest DSRC  deployment in the country, with only New York City having more DSRC devices deployed.  The AACE is  however the only location that has been thru a system‐wide device upgrade, and therefore has realistic  numbers as to the cost of such an equipment changeover, notwithstanding the validation and  integration costs.    With this background as a historical foundation, this case study will document how equipment and  resources needed to transition AACE from DSRC to C‐V2X would likely exceed $14M.    Detailed Deployment Process  Deploying a connected vehicle (CV)
From page 106...
... Page 106  For those who might be interested, a more detailed description of each step is found in Appendix C.  1. Planning and Requirements Capture Planning and requirements capture is always the first step in ensuring a robust systems engineering process and a successful deployment.  As C‐V2X is based on different standards and specification than DSRC, the requirement originally developed for DSRC may be a starting point but cannot be assumed complete.  A thorough review of all functional and operational requirements must be executed.
From page 107...
...   Page 107      2.1.2. RSU Supplier Selection  The RSU supplier selection is similar.  Each prospective supplier will be required to produce two  representative units for testing.  The suppliers' RSUs will be set up at the City of Ann Arbor's  Wheeler facility.  The testing will assess, determine, and analyze the functional performance of  each RSU.    When testing is complete, the UMTRI team will review the results as well as the supplier  proposals to make the final supplier selection.  From our experience, the C‐V2X device suppliers will all market their products equally well.   However, only through testing and rigorous evaluation, can the true value and functionality of  their products be assessed.  2.2.
From page 108...
... Page 108  roughly the same as the amount of test failures for the AACVTE vintage of devices.  Therefore, three  rounds of interoperability testing should be expected.  3. Vehicle Preparations and Fleet Retrofit Since 2011, UMTRI has equipped over 6,000 vehicles of all types with connected vehicle devices.  As industry experts, we have trained companies like Brand Motion that was later hired by the Tampa CV Pilot for their installations. Furthermore, we instituted an internship program with Washtenaw Community College to train automotive technicians to install connected vehicle technology.
From page 109...
...   Page 109      are to replace existing DSRC equipment with C‐V2X equipment, the primary task is to confirm the  existing locations will be acceptable for C‐V2X devices ‐ and moved if inadequate.    Additional work activities will need to be undertaken to develop revised design network topology to  function with C‐V2X equipment, network and power/security requirements and design basis for  over‐the‐air (OTA)  updates of the equipped vehicle installations.    Finally, an assessment will need to be undertaken to assess structures integrity and equipment  optimal mounting per site and perform initial testing for Radio Frequency Interference in the  required bands to confirm optimal site mounting locations and site mounting options.  The new C‐ V2X RSUs may have different mounting requirements than the current DSRC RSUs deployed for the  AACVTE program.  As part of this work an evaluation of the RSU design and specific mounting  requirements will be required (which may differ for each C‐V2X vendor)
From page 110...
... Page 110  Timing Estimate  Based on our experience, UMTRI estimates that it will take a minimum of 2 years to retrofit the current  AACE to C‐V2X, and could be much longer.    Figure 19 below shows this minimum estimated based on:   6 months of planning and requirements  6 months of pre‐deployment testing  12 months to retrofit 2,175 vehicles and 75 infrastructure sites It is important to note that each of those steps includes variables that are unaccounted for given the  lack of any large‐scale C‐V2X deployment ‐ and could therefore be much longer.  And in general the first  two steps cannot be done in parallel.  Figure 18 ‐ Estimated Retrofit Schedule  Cost Estimate  The total cost to perform this upgrade is estimated at $14,260,115.  An itemized breakdown of costs for  the DSRC to C‐V2X conversion are presented in Table 1, following this section.  The detail behind each of  those estimates is described below. All costs are estimated from actual expenditures and experience  through SPMD, AACVTE, and reinforced with current quotes received for the newly awarded 2021  ATCMTD Smart Intersections Project (the Advanced Transportation and Congestion Management  Technologies Deployment grant program that UMTRI was recently awarded)
From page 111...
...   Page 111      The City of Ann Arbor will support the requirements capture and cascade in preparation for the  deployment.  The City has allocated 8 hours to this task to attend meetings.  In addition to labor, the following other direct costs will be incurred:     Vehicle insurance ‐ $4,416    Vehicle maintenance and gas ‐ $3,000    Update marketing materials ‐ $2,000   Procurement/Testing Budget Details (6 months)   Because procurement is a natural function of most agencies, additional budget has not been estimated  for this step (although plenty of time is required)
From page 112...
... Page 112  experience and takes into account the number of no‐shows, vacation, and sick days typically  encountered.    It is not a straightforward calculation of 1.5 hours for 2,175 vehicles.     First, as previously mentioned, not all subjects will stay in the study.  Although, we will bring in all of the existing participants, we expect to need to recruit at least 650 more based on historical retention rates.  This brings the number of appointments up to 2,825.  Second, we can easily schedule to full capacity when we first reach out to the existing participants.  However, it is harder and harder to schedule those that are not as enthusiastic to come back in to UMTRI.  These down times are usually filled with fleet installations.  When there are only a few participants left, it is even harder and some will never come back.  Still about 50 SPMD participants have never returned to have their devices removed and updated to the AACVTE vintage.
From page 113...
...   Page 113      • Misc. supplies for subject vehicle repairs damaged during installation ‐ $2,000  • Computer ‐ $1,500  • Marketing suppliers ‐ $2,000  • Misc. shipping ‐ $250  Infrastructure Preparations and Deployment Budget Details (12 months ‐ can be simultaneous  with vehicle retrofits)   UMTRI will lead the infrastructure team and coordinate between the City of Ann Arbor and RSU  suppliers.  UMTRI will also be responsible for procuring all hardware and supplies for a successful  infrastructure deployment.  UMTRI allocates 1 FTE for this project management and coordination effort.  The UMTRI team will also configure RSUs and execute all task described in Section 5.  They will work  directly with the City of Ann Arbor to support the installations.  11.2 FTE (23,260)
From page 114...
... Page 114  Salaries Year 1 Year 2 Total Year 1 Year 2 Total Year 1 Year 2 Total Year 1 Year 2 Total Year 1 Year 2 Total UMTRI 576,316 576,316 322,288 322,288 1,166,340 1,166,340 211,441 211,441 898,604 1,377,781 2,276,385 WSP 26,494 26,494 418,763 418,763 0 0 1,952,476 1,952,476 445,257 1,952,476 2,397,732 City of Ann Arbor 457 457 1,493 1,493 0 0 121,692 121,692 1,950 121,692 123,642 Subtotal Labor 603,267 0 603,267 742,544 0 742,544 0 1,166,340 1,166,340 0 2,285,608 2,285,608 1,345,811 3,451,948 4,797,759 Other Direct Costs Respondent/Subject Fees Participant Compensation 0 0 500,000 500,000 0 0 500,000 500,000 Research Supplies 0 0 0 0 0 0 0 CV2X Roadside Units @$3900 0 39,000 39,000 0 292,500 292,500 39,000 292,500 331,500 CV2X RSU Monitoring - Set Up Fee 0 0 0 13,750 13,750 0 13,750 13,750 CV2X RSU PoE, comm switch, and other misc. items 0 0 0 62,000 62,000 0 62,000 62,000 CV2X OBUs @$1200 0 24,000 24,000 3,000,000 3,000,000 0 24,000 3,000,000 3,024,000 CV2X and GPS Antennas, Wiring Harnesses, and mounting hardware.
From page 115...
...   Page 115      Summary  This case study demonstrates that transitioning from C‐V2X is much more than simply swapping out  devices.  There are dozens of steps, many of them with little or no precedent to build from, and many of  them laden with variable paths and outcomes.    In many instances staff availability issues exist (due to constrained budgets) , and workforce training  challenges are likely to present unknown variables.  Likewise, the universe of consultants, contractors,  and vendors that have a depth of experienced personnel in these areas is quite small ‐ and could be  constrained in terms of availability and/or skill sets.  It is important to note that this analysis does NOT factor in device availability.  At the time of this  writing, several infrastructure owners/operators have been reporting lengthy production cycles while C‐ V2X vendors start‐up.  The bottom line is that even with an experienced team, and at reasonable scale like this deployment  represents ‐ retrofit, while certainly feasible, is incredibly complex.     
From page 116...
... Page 116  Appendix C ‐ Additional Case Study Information  The following is a detailed description of the activities necessary to transition the AACE from DSRC to C‐ V2X radio technology.  These activities align with the high‐level activity descriptions included in the main  body of the Case Study.  In order for this appendix to be complete however, there may be language that  repeats what is found in the main body.  Most sections then provide a deeper dive with examples and a  detailed basis for justifying the level of effort estimates for each activity.    It is organized into detailed planning activities, pre‐deployment testing, vehicle preparations and fleet  deployment and infrastructure preparations and deployment.  Planning and Requirements Activities  Deploying a CV environment is not simply a matter of buying equipment and installing it, expecting it to  be operational out of the box.  UMTRI knows this better than anyone.  As noted in Section 1 of the Case  Study, we have stood up the connected environment in Ann Arbor twice.  First with Safety Pilot Model  Deployment (SPMD) ; and again, with the Ann Arbor Connected Vehicle Test Environment (AACVTE)
From page 117...
...   Page 117      technology during Release 17, which is currently ongoing.  A thorough review of all of these releases  must be conducted to ensure that any deployment today is also positioned for future upgrades, to the  extent practical.    In conjunction, a state of the industry analysis must be completed to be able to fully define the option  space for a C‐V2X environment.  The state of the industry analysis will determine what products and  tools are currently available, the status of certification testing processes, interface to the security  credential management system (SCMS)  readiness, and other pertinent details of general C‐V2X  deployment readiness.  All of the requirements will be tempered with the state of the industry and then  rolled into to the procurement specification and test plans.   Procurement  Following the requirements and industry review, the UMTRI team would commence the procurement  process.  The University of Michigan Sponsored Programs offices manages these procurement activities  and financial post‐award activities of the enterprise and other sponsored activities to ensure compliance  with applicable federal, state, and local laws as well as sponsor regulations. The University receives over  $1 billion annually in revenues from various government agencies and private sources for sponsored  programs. As such, it is critical that the University follow Title 2 CFR and has established processes to  ensure full compliance.  Furthermore, the processes described below are described in greater detail in  the AACVTE program document "AACVTE Procurement Plan" delivered to U.S. DOT 5/31/2018.   Pertinent excerpts of this plan follow.  Device Supplier Selection  A Request for Proposal (RFP)
From page 118...
... Page 118  The second category consisted of weighted criteria. The weight of each criteria was determined by the  test conductor team prior to receiving responses from any suppliers. The following, in no particular  order, is the list of criteria that were developed by the test conductor team.   Financial evaluation from purchasing assessment of long‐term company viability  Test results from qualification testing o Bench o Security o GPS accuracy o Elevation positioning services o Connector specification  Cost  Logistics  Compliance Specifications o Serial number o Antenna mounting robustness o State indicator o System event logs o Version control o Functions out of the box o DSRC antenna solution o GPS antenna solution  Installation o Size o Installation robustness o Installation documentation  Compliance with proposed delivery schedule  Willingness to comply with the proposed agreement  ISO 26262 compliance  Proposed engineering support  Removable media type  Past experience  Product maturity  Perceived price risk (Probability of unit price increase)  Perceived performance risk (Probability of performance problems that may include poor quality devices of not meeting delivery schedule)
From page 119...
...   Page 119      RSU Supplier Selection  The RSU supplier selection is more involved.  Lessons learned from SPMD were incorporated in AACVTE  adding RSU burn‐in testing as a requirement of the supplier selection process.    Each prospective supplier will be required to produce two representative units for testing.  The  suppliers' RSUs will be set up at the City of Ann Arbor's Wheeler facility.  The Wheeler site has been  used for testing during both SPMD and AACVTE programs.  The facility is connected to the City of Ann  Arbor's fiber network and as such, it provides real‐world testing in a lab (controlled)  environment.  It  also facilitates integration testing with Traffic Signal Controllers (currently utilized within Ann Arbor)
From page 120...
... Page 120   Broadcast ‐ GID  Broadcast – WSA/PDM  Broadcast ‐ Immediate Forward Message  Broadcast – Store & Repeat Message  Broadcast Forward ‐ BSM  SNMP ‐ Linux OS MIBs  SNMP ‐ RSU MIBs  SNMP – Traps  SNMP – Unit Monitoring and full Unit Configuration  Usability ‐ HW Mounting  Usability ‐ Multi Client Cfg  Usability ‐ Ease of Use  Usability ‐ Functional  Usability ‐ 2W test  Usability ‐ Long Term Test  Cost ‐ Setup/O&M Labor  Cost ‐ Per Unit When testing is complete, the infrastructure team will review the above results as well as the supplier  proposals to make the final supplier selection.  From our experience, the C‐V2X device suppliers will all market their products equally well.  However,  only through testing and rigorous evaluation, can the true value and functionality of their products be  assessed.  Other Equipment and Supplies  In order to install the OBUs and RSUs, several other pieces of equipment (items costing $5000 or more)   and supplies (under $5000)
From page 121...
...   Page 121      one housing.  This antenna cost is $250.  A typical shark fin DSRC antenna is $50; a window‐ mount DSRC antenna is $90.25.  DSRC cables are $28.50.  A GNSS antenna costs $15 and the  GNSS extension cable is $23.00.    Miscellaneous.  Miscellaneous products and tools are used during the OBU installation process.   On average, the price per vehicle is $5.00 for miscellaneous products and include adhesives,  insulations, wires, and connectors.  For the RSUs, we assumed that the new C‐V2X RSU could be installed in the same location.  Therefore, a  new mast arm or other mounting pole will not be required.  However, it is possible that new power  supplies, remote power management, Power over Ethernet (PoE)  switches, brackets, cabling assemblies,  and cabling connectors may be required that are specific to the new C‐V2X RSU.  In addition to the hardware and supplies required for device installation, new tools are required for  testing during the installation process for both vehicles and infrastructure, as well as used during  interoperability and end‐to‐end testing.  Specifically, a sniffer tool is required as it will not simply be a  matter of updating the existing DSRC tool.  The C‐V2X sniffer tool will be totally new.     Pre‐Deployment Testing  Interoperability testing is critical and must be conducted prior to full‐scale field deployment.  At least  two rounds of interoperability testing will need to be conducted.  Interoperability testing must be  conducted after devices have completed certification testing and preferably have proof of Omni Air  approval.  The first round of interoperability testing will identify all issues that need corrective action.   Interoperability testing has both bench and field test components.  The suppliers are notified of failures  through Problem Trouble Reports (PTR)
From page 122...
... Page 122  Bench Pre‐Tests  All tests are repeated for each device supplier and will be dictated by the number of suppliers selected.   RSU Network configuration (IPv4/IPv6 Addresses, gateway, etc.)  Full RSU UMTRI/City IPv4/IPv6 addressing assignments defined  RSU cert request –RSU request to GHS received and installed correct (validate/verify)
From page 123...
...   Page 123      RSU BSM Forward Testing   RSU SNMP test – BSM forward configuration SNMP put, syntax alignment to 4.1a Spec, to back  office ip6 BSM received and decoded correct (packet verify)    RSU BSM receive/forward test – OBU to RSU BSM received and decoded correct (packet verify)
From page 124...
... Page 124  UMTRI will recruit participants for the installation under the existing AACVTE IRB #HUM00148099.   Participants will continue to be recruited through multiple channels including the University of Michigan  Health Research site, but also through flyers, outreach to large employers in the community and largely  through word‐of‐mouth.    To qualify to participate in the AACVTE program, a person must own their own vehicle and report  regular driving in the Ann Arbor area.  When participants come to UMTRI to enroll, they must complete  an Informed Consent document, have their vehicle equipped, and receive payment for their 1‐year  participation in the programs.  Each participant will be paid $200 per year.  C‐V2X deployment is  expected to be similar.  Once a participant agrees to have their vehicle equipped, they are scheduled for a 90‐minute  appointment at UMTRI.  Our appointments run much like a car dealer.  The participant arrives at UMTRI  at the scheduled time, and brings their keys into the UMTRI office.  They are shown what devices and  antennas are going to be installed in their vehicle and what to expect during normal operation of the  system.  After the consent form is signed, the participant may opt to stay in the waiting room or pick up  their vehicle later.  When the vehicle installation is complete, the participant is paid $200 and is given  back their keys.  We use appointment plus software to schedule our installations.  The software costs $2,000 a year for a  license.  It takes up to an hour and a half to do an installation and is dependent on many factors.  One  factor is the make and model of the vehicle.  Another factor is what is in the vehicle.  Although  participants are instructed to remove everything from their trunk and backseat, this is not always the  case and the technician will have to do it, while taking care not to lose any items.  For this project, we will contact all 2,175 current participants and offer them $200 to have the DSRC  equipment removed from their vehicle and the C‐V2X equipment installed.  If they opt out, they will still  need to schedule an appointment at UMTRI to have the equipment removed.  We typically experience a  70% retention rate.  If that is the case, we will need to recruit an additional 650 subjects and will end up  scheduling 2,825 vehicles in order to maintain a fleet of 2,175.  Fleet Management  Over 400 vehicles, or roughly 20% of the deployment, are on fleet vehicles that operate in Ann Arbor.   This includes:   City of Ann Arbor fleet (100)  Ann Arbor Area Transit Authority buses (65)
From page 125...
...   Page 125      agree where the installations will occur.  Installations may occur at the fleet owner's facilities;  otherwise, they are completed at UMTRI.  They also agree to inform UMTRI if a vehicle is removed from  service or new vehicle enter into service.  UMTRI agrees to install the OBU in a manner that does not  materially interfere with normal transportation operations or involve any irreversible modifications,  with the exception of drilling a hole in the roof for antenna installation on bus fleets.    Typically, for each fleet, the installations are done over a several day period, depending on the size of  the fleet.  Some of the larger fleets may take weeks.  Furthermore, the installations are usually  completed while the vehicle is out of service, after normal operating hours including nights and  weekends.  Conversion to C‐V2X will require coordination and possibly renewed agreements which each of these  fleet operators.   Installation is roughly the same as that for private participants, but may require work  to be done overnight, and availability of the vehicles may limit the pace at which the conversion occurs.  Property and Configuration Management  During the installation process, the specific OBU is linked to the vehicle in which it is being installed. At a  high level, the property management process consists of ● Scanning a barcode on the vehicle that corresponds to the VIN  ● Adhering a barcode on the device identifying the specific OBU  ● Logging (via scanning)  the vehicle information, OBU information, HMI display information and  the link between them into the property management system  ● Photographing the vehicle and documenting the VAD/ASD installation    Configuration Management Interface  Figure 20 is a screen shot of the OBU configuration management interface. This is the view used by  technicians to enter measurements, confirm barcode scans, and load images from a camera.     
From page 126...
... Page 126  Figure 20:  VAD/ASD Configuration Management Interface (source: UMTRI)
From page 127...
...   Page 127      The lettered sections are described as:  A: The technician scans the vehicle identification number (VIN)  here  B: The software validates the VIN, and assigns it a five‐digit vehicle ID that it will broadcast   C: The technician selects the radio button that applies for the installation being a VAD or ASD  D: The technician selects the manufacturer of the device from the dropdown  E: The device's unique barcode is scanned here for record keeping  F: A sticker with the vehicle ID is placed on vehicles without VINs that can be scanned  G: If the vehicle is part of a fleet, this button is selected and the appropriate information is added (fleet  name, fleet ID)
From page 128...
... Page 128  Photos   Photos are used for recording any damage that occurred prior to installation and for reference if any  questions about antennas placement arise. The standard photos that are captured during an installation  include:  1. The front of the vehicle 2.
From page 129...
...   Page 129      Installation  The first rule of installation is do no harm.  Although there is some leeway for fleets, there is no  tolerance for people's personal vehicles.  There cannot be any permanent modification to their vehicles  during the initial installation, during the normal operations, and upon removal of the equipment.  Vehicle Inspection and Preparation  Upon arrival, the participant's vehicle is examined for existing damage, which is then documented, along  with any aftermarket equipment. Photographs are taken of any noteworthy preexisting  conditions.  Vehicle content is reviewed to confirm there are no reasons to exclude the vehicle from the  study, such as doors that do not open, aftermarket tint on rear windows, or poor paint condition that  could be worsened by installation.   Interior trim is removed if necessary to facilitate mounting of  components and routing of the wire harness. Technicians perform the following activities:  ● Photograph any vehicle damage or components in poor condition  ● Inform participants of any issues observed during visual examination (e.g., low tire  pressure, broken headlight, etc.)   ● Inform participants if the battery is in poor condition  ● Photograph aftermarket equipment  ● Remove personal effects which would interfere with installation or are fragile. They are  stored in a box to maintain their condition and placed back in the vehicle when  installation is complete  Antenna Installation  The following sections detail key antenna mounting requirements, based on the experience of SPMD  and AACVTE.  Lay participants  ● No permanent modification to the vehicle.  At the end of the study after equipment removal,  there should be no visible evidence remaining.  ● The equipment should survive one full year of normal vehicle operation, including Michigan  winter climate, weekly carwashes, vibration, extended travel at freeway speeds, dirt roads, etc.  ● There should be no exposed cable runs on either the interior or exterior of the vehicle to  prevent interference with driver's usual operation.   ● All equipment should be mounted securely enough that it will not come loose in a crash and  pose a hazard to the driver or occupants.  Production‐style antennas which typically require a through hole in the roof are not an option for  participants' vehicles.   In the case of an exterior mount, cable runs must be brought into the vehicle interior through a body  gap (such as at the leading edge of the trunk)
From page 130...
... Page 130  There are clearly tradeoffs between antenna mounting requirements for the personal vehicles used in  the model deployment and DSRC performance requirements. Following extensive testing of both the  DSRC and GNSS antenna functionality in various mounting schemes, two different antenna mounting  locations are utilized:  1. DSRC antennas will be installed in the passenger compartment of the vehicle.  In general, two different mounting positions will be utilized.  One position will be on the rear cargo shelf of sedans.  The second position will be on the rear glass of the vehicle, either on the back glass or the side glass of the vehicle.
From page 131...
...   Page 131      Figure 22: Antenna Configuration   (from L to R: shark fin DSRC antenna, GNSS antenna, glass mount DSRC antenna, all‐in‐one antenna)  (source: UMTRI)
From page 132...
... Page 132  Vehicle Power Connection  UMTRI has outsourced the manufacture of the custom wiring harnesses between the vehicle electrical  system and the ASD/VAD mating connector.  These wiring harnesses incorporate automotive style fuse  holders for both battery and ignition feeds and are covered with an automotive grade protective  jacket.   One potential connection to the vehicle power system is by utilizing an "add‐a‐circuit" device  (Figure 24 and Figure 25) .  This device allows for the installation of a fused secondary circuit.  Figure 24: Add‐a‐Circuit Device (source: UMTRI)
From page 133...
...   Page 133      mandatory in all vehicles produced after mid‐model year 1996.  The OBD‐II connector has a 12V pin and  chassis ground which can be utilized to power the VAD.  Figure 26 shows the typical position of the OBD‐ II port in a passenger vehicle. This power source is constant and does not turn on and off with the  ignition switch.  In order to create a switched DC power source necessary for the proper operation of  VAD/ASDs, a device known as a charge guard is often utilized.      Figure 26: Typical OBD‐II Connection Location  Speaker and HMI Display Installation  Speakers are installed under the dash on the driver's side of the vehicle, in such a way that the sound is  clearly audible.  The speaker is mounted with tie wraps and foam on the back to avoid rattles. Figure 19  shows a typical speaker installation.   Figure 19: Typical Speaker Installation Under the Dash (source: UMTRI)
From page 134...
... Page 134  To prevent discoloration and damage to the dash, HMI displays are mounted on the windshield on the  driver side near the A pillar. A custom piece of ABS plastic is cut to comply with the majority of  windshield angles. This piece is adhered to both the HMI display and windshield using 3M adhesive. To  insure proper adhesion to the windshield, the glass is sprayed with 3M Silane Glass Treatment AP115.  Figure 20 shows the custom cut piece of ABS. Figure 21 shows a typical installation of an HMI display on  a windshield.  Figure 20: Custom Piece of ABS Plastic for HMI Display Mounting Purposes (source: UMTRI)   Figure 21: Typical Mounting Configuration for an HMI Display (source: UMTRI)
From page 135...
...   Page 135        Figure30: The ABS plastic used to mount ASDs in vehicles (source: UMTRI)     Figure 3122: A Possible Mounting Location for an ASD (source: UMTRI)
From page 136...
... Page 136  ● Verify that the GPS coordinates are within tolerance by executing the test procedure developed for AACVTE69. ● Verify secure mounting.
From page 137...
...   Page 137      Additional work activities will need to be undertaken to develop revised design network topology to  function with C‐V2X equipment, network and power/security requirements and design basis for over‐ the‐air updates of the equipped vehicle installations.    From prior work activities, the UMTRI team and the City of Ann Arbor has an initial network topology  that was developed to include communication network topology by site (including both center to field  and head‐end/back‐office functionality required)  as part of prior contracts under Ann Arbor Connected  Vehicle Test Environment (AACVTE)
From page 138...
... Page 138  Third, the UMTRI team will perform the necessary steps to document Site Configurations, which include  conducting site investigations to evaluate field and cabinet conditions at the proposed RSU installation  locations.  Detailed surveys of each site will be completed, and include a general overview of the  roadway geometry, existing poles, cabinets and conduit runs.   An inventory form was initially developed during the Safety Pilot Model Deployment (SPMD)  program  and will be leveraged for this project to capture specific information, such as proposed C‐V2X radio  mounting location, mounting type, existing traffic signal controller (including firmware version to  support both Signal Phase and Timing (SPaT)
From page 139...
... Page 139  require purchase, installation, and updates for the existing the PoE or switches as needed for new units  that are proven functional for the new devices.    Each RSU must be configured specifically for the site where they will be deployed.  This takes on average  4 hours per RSU.  Once RSU configuration is completed, UMTRI will bench test the RSUs prior to hand‐ off to the City of Ann Arbor's Signal Maintenance group.  The UMTRI team will work with the City of Ann  Arbor to be coordinate, schedule, manage, and perform daily with City of Ann Arbor Signal Maintenance  staff to complete the physical installation and connectivity of the new equipment.  After the physical installation is completed, work will need to be done for field verification and site  testing (message, device, integration, timing, Connected Intersection "validation")  in conjunction with  infrastructure equipment and equipped vehicle devices.  Once field verification is completed, work will  be required to develop web‐based management and monitoring for the RSUs that leverage the current  web‐based system and SNMPv3 tools used currently for the Ann Arbor Connected Vehicle Test  Environment and Operations Environment. 

Key Terms



This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.