Skip to main content

Currently Skimming:

1 Introduction
Pages 16-20

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 16...
... Although elementary particles are infinitesimal smaller relative to a grain of sand than a grain of sand is to the entire Earth the consequences of their properties are enormous. If, for example, the electron were much heavier, the universe would have evolved entirely differently: No atoms would exist, and the universe would now consist solely of electrically neutral particles.
From page 17...
... Investigating phenomena on this almost unimaginably minute scale requires the most powerful microscopes ever built: devices known as particle accelerators. In a particle accelerator, beams of subatomic particles are boosted to nearly the speed of light and then brought into collision with either a stationary target or another beam of accelerated particles coming head-on.
From page 18...
... The revolution in electronics that followed brought new applications in computers, medical electronics, industrial controls, and communications that would have been impractical or impossible with the vacuum tubes that transistors replaced. Quantum mechanics also turned out to be essential for understanding basic chemistry, the properties of materials, molecular biology, and many other aspects of the physical world.
From page 19...
... Their experience in creatively solving novel problems, working with sophisticated technologies, discerning patterns hidden in massive data sets, and collaborating on large, complex projects is invaluable, whether they remain in elementary-particle physics or go into other fields, as more than half of them now do. Modern elementary-particle physics experiments have enabled physicists to test theories that predict the behavior of elementary particles under extreme conditions, which sheds light on how the universe itself behaved in its earliest moments of existence.
From page 20...
... Just as the Hubble Space Telescope is used to study many different phenomena, not all of which were even known when it was being built, particle accelerators and detectors are used to investigate issues that are recognized or become amenable to experiment only after the instruments are running. Elementary-particle theorist Steven Weinberg observed recently that physicists frequently "do not know in advance what are the right questions to ask, and we often do not find out until we are close to an answer." Whatever future research in elementary particle physics reveals about the world around us, one thing is certain: It will inspire awe for the intrinsic beauty of the fundamental principles that shape our universe.


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.