Skip to main content

Currently Skimming:

Executive Summary
Pages 1-9

The Chapter Skim interface presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter.
Select key terms on the right to highlight them within pages of the chapter.


From page 1...
... The protein crystal growth work focuses on using microgravity to produce higher quality macromolecular crystals for structure determination and on improving understanding of the crystal growth process. The cell science work focuses on basic research that contributes to understanding how the microgravity environment affects the fundamental behavior of cells, particularly in relation to tissue formation and the effects of space exploration on living organisms.
From page 2...
... Cell Science NASA's cell science program focuses on studying the influence of low gravity on fundamental cell biology as it relates to tissue formation, and on providing insight into the effects of microgravity on cell, tissue, and organ system function, especially as it might affect participants in space exploration. Finding: It is appropriate for NASA to support a cell science program aimed at exploring the fundamental effects of the microgravity environment on biological systems at the cellular level.
From page 3...
... While there is already a sharing of flight hardware, a mechanism to establish projects that are jointly funded by the Life Sciences Division and the Microgravity Research Division should be considered. Recommendation: The research strategies and projects of the cell science work in the biotechnology section of the Microgravity Research Division should be more closely coordinated with the work of NASA's Life Sciences Division to take advantage of overlapping work on bone and muscle constructs and of potential synergies between in vitro and in vivo research projects.
From page 4...
... Finding: Automation, monitoring, real-time feedback, telemanagement, and sample recovery (via mounting and freezingJ will be vital for successful protein crystal growth experiments on the ISS. The XCF, through its use of robotics and a variety of experimental and observational capabilities, provides many of the tools researchers need to take full advantage of the microgravity environment.
From page 5...
... Finding: The limited amount of crew time available for research-related work and the infrequency with which investigators will have access to their samples via shuttle trips mean that automation of routine tasks, groundbased control of experiments, on-orbit analytical capabilities, and real-time transmission of digital data are vital for conducting effective cell science research on the ISS. Refrigeration and freezer capability and transport space are not the only factors limiting the throughput of cell science research on the ISS.
From page 6...
... The rack currently assigned to the XCF growth equipment and managed by NASA Space Product Develop ment should be officially dedicated to the peer-reviewed macromolecular research run out of the Microgravity Research Division. SELECTION AND OUTREACH NASA research in cell science and protein crystal growth is funded through a collection of approximately 90 active 4-year grants; the total size of the program is roughly $19 million per year.
From page 7...
... The group is responsible for providing input to both the protein crystal growth and cell science sides of the program, but in view of the very different scientific objectives and instrumental requirements, having a single working group for these two disparate areas serves no real purpose. If the DWG is split into two groups, each would be able to focus on the issues most relevant to its own scientific area, and the increased number of slots available for each area would give greater breadth to the groups.
From page 8...
... Protein Crystal Growth At present, the primary goal of NASA's protein crystal growth program should be to demonstrate microgravity's effect on protein crystal growth and to determine whether studies of macromolecular assemblies with important biological implications will be advanced by use of the microgravity environment. To this end, the task group proposes that NASA instigate a high-profile, nationwide series of grants to support researchers engaging in simultaneous efforts to get both the best possible crystal on the ground and the best possible crystal in space of biologically important macromolecules.
From page 9...
... EXECUTIVE SUMMARY 9 Cell Science NASA has built a very productive relationship with the NIH based on the development and use of rotatingwall vessels. The NASA/NIH Center for Three-Dimensional Tissue Culture was started in 1994 to expose a wider community to bioreactor technology by allowing researchers from government agencies (e.g., NIH, the Food and Drug Administration, and the Department of the Navy)


This material may be derived from roughly machine-read images, and so is provided only to facilitate research.
More information on Chapter Skim is available.