National Academies Press: OpenBook
« Previous: Executive Summary
Suggested Citation:"Introduction." National Research Council. 1989. Biologic Markers of Air-Pollution Stress and Damage in Forests. Washington, DC: The National Academies Press. doi: 10.17226/1414.
Page 5

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Biologic Markers of Air-PoDution Stress and Damage in Forests INTRODUCTION The effects of air pollution on forests have long been the object of study and public concern. For example, smelters in Copper Hill, Tennessee, in Sudbury, Ontario, and in Palmerton, Pennsylvania (reviewed by Kozlowski, 1985) have devastated forests over large areas. In contrast, the effects of New York City's air pollution on the growth of corticolous lichen populations on Long Island (Brodo, 1966) have been subtle: the changes documented were so obscure that even an experienced botanist observing a segment of the gradient might overlook the changes and dismiss the differences as being well within the normal range of variation. Similarly, patchiness in the distribution, vigor, reproductive success, and other attributes of trees in forests often is accepted as normal. But the extent of normal variation is not well known, so understanding normal variability has taken on new importance with the accumulation of evidence of declines over the last 25 years in the vitality of many forests in the United States and in Europe (e.g., Johnson and Siccama, 1983; Andersson, 1984; Schutt and Cowling, 1985; McLaughlin et al., 1987; Sheffield and Cost, 1987; Woodman and Cowling, 1987; Pitelka and Raynal, 1989). Even if forests are distant from sources of pollutants, ambient concentrations of airborne chemicals can be sufficient to produce visible injury, alter biochemical and physiologic processes that control metabolism and carbon allocation, reduce resistance to disease, reduce resistance to abiotic stress, and lead to the death of individual trees (Berry and Riperton, 1963; Linzon, 1966; Dochinger, 1968; Cobb and Stark, 1970; Miller and McBride, 1975; Cowling, 1985; Kozlowski, 1985; McBride et al., 1985; McLaughlin, 1985~. However, the cause-and-effect relationships in such examples often are difficult to discern. The pollutants most often suspected in cases of forest stress and damage are combinations of sulfuric acid and sulfur oxides, nitric acid and nitrogen oxides, and ozone. As research progresses, the list might grow to include an array of other organic and inorganic substances. The effects of a wide variety of stresses on trees and forests often are similar, and it remains to be seen whether a particular set of symptoms can be s

Next: Using Markers in Combination »
Biologic Markers of Air-Pollution Stress and Damage in Forests Get This Book
 Biologic Markers of Air-Pollution Stress and Damage in Forests
Buy Paperback | $100.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

There is not much question that plants are sensitive to air pollution, nor is there doubt that air pollution is affecting forests and agriculture worldwide. In this book, specific criteria and evaluated approaches to diagnose the effects of air pollution on trees and forests are examined.


  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!