National Academies Press: OpenBook
« Previous: Chapter 6 - 3R Project Design Guidelines for Specific Roadway Types
Page 125
Suggested Citation:"Chapter 7 - Summary of 3R Design Guidelines." National Academies of Sciences, Engineering, and Medicine. 2021. Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. Washington, DC: The National Academies Press. doi: 10.17226/25206.
×
Page 125
Page 126
Suggested Citation:"Chapter 7 - Summary of 3R Design Guidelines." National Academies of Sciences, Engineering, and Medicine. 2021. Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. Washington, DC: The National Academies Press. doi: 10.17226/25206.
×
Page 126
Page 127
Suggested Citation:"Chapter 7 - Summary of 3R Design Guidelines." National Academies of Sciences, Engineering, and Medicine. 2021. Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects. Washington, DC: The National Academies Press. doi: 10.17226/25206.
×
Page 127

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

125   Summary of 3R Design Guidelines This chapter presents a summary of the design guidelines presented in this report. 1. The guidance presented in this report is applicable only to 3R projects; that is, projects whose scope includes only resurfacing, restoration, or rehabilitation. The guidelines are not applicable to new construction or reconstruction projects. Therefore, 3R projects should not involve a substantial amount of construction on new alignment, realignment of a substantial portion of the project, or a change in the basic roadway cross section; projects that involve these changes would more properly be classified as new construction or reconstruction. If a limited or isolated portion of a project involves new construction or reconstruction, the remainder of the project can be designed as 3R work. For freeway projects, any change in the existing roadway alignment should be considered as reconstruction. 2. The guidance presented in this report is applicable to projects that fall within the scope of 3R work, as defined above in Guideline 1, regardless of the funding source for the project. These guidelines are intended for application to any project involving 3R work, not just projects funded from the federal 3R program or the 3R program of any highway agency. 3. The primary objective of most 3R projects is to preserve and extend the life of the pave- ment by resurfacing. Thus, 3R projects are normally initiated because the need for pavement resurfacing has been identified by a pavement management system or by other means. However, the guidelines presented in this report may be applied to any project that falls within the scope of 3R work (i.e., does not involve new construction or reconstruction) regardless of the means by which the need for the project was identified. 4. While the primary objective of most 3R projects is to preserve and extend the life of the pavement, 3R projects may also provide an opportunity to make additional design improve- ments that may reduce crash frequency or severity or may improve traffic operations. As part of the design process for 3R projects, an assessment should be made as to whether such design improvements should be incorporated in the 3R project. 5. Design guidance for 3R projects based on dimensional design criteria, such as the 3R design criteria presented in TRB Special Report 214 (1), is no longer indicated. Research has shown that application of any set of fixed dimensional design criteria for 3R projects is likely to produce smaller crash reduction benefits than the performance-based approach outlined in Guideline 6 (7). 6. Design improvements should be incorporated in 3R projects when any of the following three criteria are met: a. An analysis of the crash history of the existing road identifies one or more crash patterns that are potentially correctable by a specific design improvement; b. An analysis of the traffic operational LOS indicates that the LOS is currently lower than the highway agency’s target LOS for the facility or will become lower than the target LOS within the service life of the planned pavement resurfacing (typically 7 to 12 years); or C H A P T E R   7

126 Guidelines for Integrating Safety and Cost-Effectiveness into Resurfacing, Restoration, and Rehabilitation (3R) Projects c. A design improvement would be expected to reduce crashes sufficiently over its service life to be cost-effective; that is, the anticipated crash reduction benefits over the service life of the project should exceed the cost of implementing the improvement. Procedures for applying the types of analyses identified in Guidelines 6a, 6b, and 6c are presented in Chapters 3, 4, and 5 of this report. 7. A crash history analysis or a traffic operational analysis (as described in Guidelines 6a and 6b, respectively) by itself provides sufficient justification for implementing an appropriate design improvement that addresses the identified need and for which the highway agency has sufficient funding available. The assessment of the appropriateness and affordability of the improvement should be made by the highway agency. 8. If neither the crash history analysis nor the traffic operations analysis identifies a need for a design improvement, implementation of an improvement may still be appropriate if an assessment of the anticipated crash reduction benefits and the costs of the design or traffic control improvements indicates that the improvements would be cost-effective (see Guideline 6c). The benefits and costs considered in such an analysis are those above and beyond the anticipated benefits and costs of the pavement resurfacing, which is already planned and which will likely be accomplished whether or not additional improvements are made. Design or traffic control improvements in addition to pavement resurfacing should be considered where their anticipated benefits exceed their anticipated costs. Spreadsheet Tools 1 and 2, which are presented in Chapter 5 of this report, can be used to assess the anticipated benefits and costs and the cost-effectiveness of specific design improvements. The benefits of design improvements are assessed in the spreadsheet tools on the basis of the crash prediction methods in Part C of the HSM (2, 3). The assessment of the appropriateness and the affordability of the improvement should be made by the highway agency. 9. The spreadsheet tools discussed in Guideline 8 can be used to conduct three types of benefit– cost analysis: – Benefit–cost analysis for a single design alternative at a single site, – Benefit–cost analysis to choose between several design alternatives for a single site, and – Benefit–cost analysis to develop agency-specific minimum AADT guidelines for appli- cation in design decisions. The first two of these types of benefit–cost analysis are preferred. The third type is less desirable than the first two approaches but should provide acceptable results. The three approaches to benefit–cost analysis are discussed in Chapter 5 of this report. 10. A few design improvements, such as normal cross slope restoration, are indicated in 3R projects when a need is identified, even when formal tools to assess the cost-effectiveness of such improvements do not exist. The discussion of design guidelines in Chapter 6 of this report identifies situations in which benefit–cost analyses are feasible and are suggested for assessing both the need for specific design improvements and situations in which specific restoration or rehabilitation work may be appropriate, even where benefit–cost analyses are not currently feasible. 11. Where none of the three criteria in Guideline 6 are met and no design improvements of the type discussed in Guideline 10 are needed, 3R projects should generally be limited in scope to pavement resurfacing. It makes little sense to invest scarce resources in design improvements as part of a 3R project when the existing roadway is performing well and the potential design improvement would not be cost-effective. Making improvements that are not needed or not cost-effective will likely provide only small benefits, and the costs may be substantial. The same funds, invested elsewhere where the need for improvement is documented or the cost-effectiveness of the improvement is demonstrated, would be expected to provide greater benefits, including more lives saved, more injuries prevented, and more crashes eliminated. Since available funds for 3R projects are limited, Guideline 11 encourages highway agencies to take a systemwide perspective in planning 3R projects,

Summary of 3R Design Guidelines 127   investing available funds where they will provide the greatest crash reduction and avoid- ing investments that will provide little crash reduction. With this approach—focusing design improvements on the projects with the best opportunities to reduce crashes and implementing only resurfacing on projects without accompanying design improvements where opportunities to reduce crashes are more limited—the total crash reduction expected from each year’s 3R projects can be increased.

Next: Acronyms and Abbreviations »
  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!