National Academies Press: OpenBook
« Previous: 10 Conclusions and Recommendations
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

References

ALA (American Lung Association). 2021. Petition for Reconsideration of National Ambient Air Quality Standards for Particulate Matter, 85 Federal Register 82,68 (Dec. 18, 2020). https://www.regulations.gov/comment/EPA-HQ-OAR-2015-0072-1242 (accessed November 16, 2021).

Angrist, J. D., G. W. Imbens, and D. B. Rubin. 1996. Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91(434):444-455.

Antonelli, J., G. Parmigiani, and F. Dominici. 2019. High-dimensional confounding adjustment using continuous spike and slab priors. Bayesian Analysis 14(3):805-828.

Athey, S., G. Imbens, T. Pham, and S. Wager. 2017. Estimating average treatment effects: Supplementary analyses and remaining challenges. American Economic Review 107(5):278-281.

Athey, S., G. W. Imbens, and S. Wager. 2018. Approximate residual balancing: Debiased inference of average treatment effects in high dimensions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 80(4):597-623.

Athey, S., J. Tibshirani, and S. Wager. 2019. Generalized random forests. The Annals of Statistics 47(2):1148-1178.

ATS (American Thoracic Society). 2019. Comments on Integrated Science Assessment for Ozone and Related Photochemical Oxidants (External Review Draft). https://www.regulations.gov/comment/EPA-HQ-ORD-2018-0274-0030 (accessed November 16, 2021).

Austin, P. C., and E. A. Stuart. 2015. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Statistics in Medicine 34(28):3661-3679.

Austin, P. C., C. F. Wu, D. S. Lee, and J. V. Tu. 2020. Comparing the high-dimensional propensity score for use with administrative data with propensity scores derived from high-quality clinical data. Statistical Methods in Medical Research 29(2):568-588.

Averill, C., M. C. Dietze, and J. M. Bhatnagar. 2018. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Global Change Biology 24(10):4544-4553.

Baccini, M., A. Mattei, F. Mealli, P. A. Bertazzi, and M. Carugno. 2017. Assessing the short term impact of air pollution on mortality: A matching approach. Environmental Health: A Global Access Science Source 16(1):7.

Bachmann, J. 2007. Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards. Journal of the Air & Waste Management Association 57(6):652-697.

Bang, H., and J. M. Robins. 2005. Doubly robust estimation in missing data and causal inference models. Biometrics 61(4):962-973.

Baron, R. M., and D. A. Kenny. 1986. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51(6):1173-1182.

Baron, J. S., C. T. Driscoll, J. L. Stoddard, and E. E. Richer. 2011. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience 61(8):602-613.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Bergmann, E., J. Bender, and H.-J. Weigel. 2017. Impact of tropospheric ozone on terrestrial biodiversity: A literature analysis to identify ozone sensitive taxa. Journal of Applied Botany and Food Quality 90:83-105.

Bind, M-A. 2019. Causal modeling in environmental health. Annual Review of Public Health 40:23-43.

Bind, M-A., and D. B. Rubin. 2019. Bridging observational studies and randomized experiments by embedding the former in the latter. Statistical Methods in Medical Research 28(7):1958-1978.

Bind, M-A., T. J. Vanderweele, B. A. Coull, and J. D. Schwartz. 2016. Causal mediation analysis for longitudinal data with exogenous exposure. Biostatistics (Oxford, England) 17(1):122-134.

Bind, M-A., T. J. VanderWeele, J. D. Schwartz, and B. A. Coull. 2017. Quantile causal mediation analysis allowing longitudinal data. Statistics in Medicine 36(26):4182-4195.

Blair, A., J. Burg, J. Foran, H. Gibb, S. Greenland, R. Morris, G. Raabe, D. Savitz, J. T. Wartenberg, O. Wong, and R. Zimmerman. 1995. Guidelines for application of meta-analysis in environmental epidemiology. ISLI Risk Science Institute. Regulatory Toxicology and Pharmacology 22(2):189-197.

Bobb, J. F., L. Valeri, B. Claus Henn, D. C. Christiani, R. O. Wright, M. Mazumdar, J. J. Godleski, and B. A. Coull. 2015. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16(3):493-508.

Boogaard, H., A. M. van Erp, K. D. Walker, and R. Shaikh. 2017. Accountability studies on air pollution and health: The HEI experience. Current Environmental Health Reports 4(4):514-522.

Brauer, M. 2010. How much, how long, what, and where: Air pollution exposure assessment for epidemiologic studies of respiratory disease. Proceedings of the American Thoracic Society 7(2):111-115.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 2017. Classification and Regression Trees. Boca Raton, FL: Chapman & Hall.

Brewer, L. E., J. M. Wright, G. Rice, L. Neas, and L. Teuschler. 2017. Causal inference in cumulative risk assessment: The roles of directed acyclic graphs. Environment International 102:30-41.

Brokamp, C., R. Jandarov, M. B. Rao, G. LeMasters, and P. Ryan. 2017. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmospheric Environment 151:1-11.

Brokamp, C., E. B. Brandt, and P. H. Ryan. 2019. Assessing exposure to outdoor air pollution for epidemiological studies: Model-based and personal sampling strategies. Journal of Allergy and Clinical Immunology 143(6):2002-2006.

Brook, R. D., S. Rajagopalan, C. A. Pope, 3rd, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, Jr., L. Whitsel, J. D. Kaufman, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, Council on Nutrition, Physical Activity, and Metabolism. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121(21):2331-2378.

Brook, R. D., S. Cakmak, M. C. Turner, J. R. Brook, D. L. Crouse, P. A. Peters, A. van Donkelaar, P. J. Villeneuve, O. Brion, M. Jerrett, R. V. Martin, S. Rajagopalan, M. S. Goldberg, C. A. Pope, 3rd, and R. T. Burnett. 2013. Long-term fine particulate matter exposure and mortality from diabetes in Canada. Diabetes Care 36(10):3313-3320.

Brookhart, M. A., S. Schneeweiss, K. J. Rothman, R. J. Glynn, J. Avorn, and T. Stürmer. 2006. Variable selection for propensity score models. American Journal of Epidemiology 163(12):1149-1156.

Burke, J. F., J. B. Sussman, D. M. Kent, and R. A. Hayward. 2015. Three simple rules to ensure reasonably credible subgroup analyses. BMJ 351:h5651.

Callaway, B., and P. H. C. Sant’Anna. 2021. Difference-in-differences with multiple time periods. Journal of Econometrics 225(2):200-230.

Campaner, R. 2011. Mechanistic causality and counterfactual-manipulative causality: Recent insights from philosophy of science. Journal of Epidemiology and Community Health 65(12):1070-1074.

Campbell, J. L., L. E. Rustad, E. W. Boyer, S. F. Christopher, C. T. Driscoll, I. J. Fernandez, P. M. Groffman, D. Houle, J. Kiekbusch, A. H. Magill, M. J. Mitchell, and S. V. Ollinger. 2009. Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Canadian Journal of Forest Research 39(2):264-284.

Candes, E. J., J. Romberg, and T. Tao. 2006. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2):489-509.

Capps, S. L., C. T. Driscoll, H. Fakhraei, P. H. Templer, K. J. Craig, J. B. Milford, and K. F. Lambert. 2016. Estimating potential productivity cobenefits for crops and trees from reduced ozone with US coal power plant carbon standards. Journal of Geophysical Research-Atmospheres 121:14679-14690.

CARB (California Air Resources Board and Office of Environmental Health Hazard Assessment). 2018. Comments on the Draft Integrated Science Assessment for Particulate Matter Air Pollution. https://www.regulations.gov/comment/EPA-HQ-ORD-2014-0859-0056 (accessed November 16, 2021).

Carone, M., F. Dominici, and L. Sheppard. 2020. In pursuit of evidence in air pollution epidemiology: The role of causally driven data science. Epidemiology (Cambridge, Mass.) 31(1):1-6.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

CASAC (Clean Air Scientific Advisory Committee). 2007. Review of EPA’s Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria (First External Review Draft, August). Clean Air Scientific Advisory Committee, U.S. Environmental Protection Agency, Washington, DC.

CASAC. 2008. Review of EPA’s Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (First External Review Draft, September 2007). Clean Air Scientific Advisory Committee, U.S. Environmental Protection Agency, Washington, DC.

CASAC. 2019. Review of the EPA’s Integrated Science Assessment for Particulate Matter (External Review Draft—October 2018). Clean Air Scientific Advisory Committee, U.S. Environmental Protection Agency, Washington, DC.

CASAC. 2020. Review of the EPA’s Integrated Science Assessment for Ozone and Related Photochemical Oxidants (External Review Draft—September 2019). Clean Air Scientific Advisory Committee, U.S. Environmental Protection Agency, Washington, DC.

Casella, G., and R. L. Berger. 2002. Statistical Inference. 2nd ed. Australia; Pacific Grove, CA: Thomson Learning.

CDC (Centers for Disease Control and Prevention). 2004. The Health Consequences of Smoking: A Report of the Surgeon General. Office of the Surgeon General, Centers for Disease Control and Prevention, Washington, DC.

Center for Biological Diversity. 2015. Comments on Draft Integrated Review Plan for the Secondary National Ambient Air Quality Standard for Oxides of Nitrogen and Oxides of Sulfur https://www.regulations.gov/comment/EPA-HQ-OAR-2014-0128-0006 (accessed November 16, 2021).

Chay, K. Y., and M. Greenstone. 2003. The impact of air pollution on infant mortality: Evidence from geographic variation in pollution shocks induced by a recession. The Quarterly Journal of Economics 118(3):1121-1167.

Chen, Y., A. Ebenstein, M. Greenstone, and H. Li. 2013. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences 110(32):12936-12941.

Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. 2018. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal 21(1):C1-C68.

Cinelli, C., A. Forney, and J. Pearl. 2022. A crash course in good and bad controls. Sociological Methods & Research 00491241221099552.

Clancy, L., P. Goodman, H. Sinclair, and D. Dockery. 2002. Effect of air-pollution control on death rates in Dublin, Ireland: An intervention study. Lancet 360(9341):1210-1214.

Coker, E., S. Liverani, J. G. Su, and J. Molitor. 2018. Multi-pollutant modeling through examination of susceptible subpopulations using profile regression. Current Environmental Health Reports 5(1):59-69.

Cole, S. R., R. W. Platt, E. F. Schisterman, H. Chu, D. Westreich, D. Richardson, and C. Poole. 2010. Illustrating bias due to conditioning on a collider. International Journal of Epidemiology 39(2):417-420.

Cox, L. A. 2017. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality. Critical Reviews in Toxicology 47(7):603-631.

Cox, L. A. 2018. Modernizing the Bradford Hill criteria for assessing causal relationships in observational data. Critical Reviews in Toxicology 48(8):682-712.

Cox, L. A. 2019a. Improving causal determination. Global Epidemiology 1:100004.

Cox, L. A. 2019b. Should health risks of air pollution be studied scientifically? Global Epidemiology 1:100015.

Cox, L. A. 2021. Thinking about causation: A thought experiment with dominos. Global Epidemiology 3:100064.

Crouse, D. L., P. A. Peters, P. Hystad, J. R. Brook, A. van Donkelaar, R. V. Martin, P. J. Villeneuve, M. Jerrett, M. S. Goldberg, C. A. Pope, 3rd, M. Brauer, R. D. Brook, A. Robichaud, R. Menard, and R. T. Burnett. 2015. Ambient PM2.5, O(3), and NO(2) exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). Environmental Health Perspectives 123(11):1180-1186.

Crouse, D. L., S. Philip, A. van Donkelaar, R. V. Martin, B. Jessiman, P. A. Peters, S. Weichenthal, J. R. Brook, B. Hubbell, and R. T. Burnett. 2016. A new method to jointly estimate the mortality risk of long-term exposure to fine particulate matter and its components. Scientific Reports 6:18916.

Currie, J., and R. Walker. 2011. Traffic congestion and infant health: evidence from E-ZPass. American Economic Journal: Applied Economics 3(1):65-90.

Curtin, P., J. Kellogg, N. Cech, and C. Gennings. 2021. A random subset implementation of weighted quantile sum (WQSRS) regression for analysis of high-dimensional mixtures. Communications in Statistics - Simulation and Computation 50(4):1119-1134.

Czarnota, J., C. Gennings, and D. C. Wheeler. 2015. Assessment of weighted quantile sum regression for modeling chemical mixtures and cancer risk. Cancer Informatics 14(Suppl 2):159-171.

De Luna, X., I. Waernbaum, and T. S. Richardson. 2011. Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98(4):861-875.

Deryugina, T., G. Heutel, N. H. Miller, D. Molitor, and J. Reif. 2019. The mortality and medical costs of air pollution: Evidence from changes in wind direction. The American Economic Review 109(12):4178-4219.

Deschenes O., M. Greenstone, and J.S. Shapiro. 2012. Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program and Ozone Reductions. Cambridge, MA: National Bureau of Economic Research.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Di, Q., L. Dai, Y. Wang, A. Zanobetti, C. Choirat, J. D. Schwartz, and F. Dominici. 2017a. Association of short-term exposure to air pollution with mortality in older adults. JAMA 318(24):2446.

Di, Q., Y. Wang, A. Zanobetti, Y. Wang, P. Koutrakis, C. Choirat, F. Dominici, and J. D. Schwartz. 2017b. Air pollution and mortality in the Medicare population. New England Journal of Medicine 376(26):2513-2522.

Díaz, I. 2019. Machine learning in the estimation of causal effects: Targeted minimum loss-based estimation and double/debiased machine learning. Biostatistics kxz042.

Díaz, I., N. Williams, K. L. Hoffman, and E. J. Schenck. 2021. Nonparametric causal effects based on longitudinal modified treatment policies. Journal of the American Statistical Association 1-16.

Dietze, M. C., and P. R. Moorcroft. 2011. Tree mortality in the eastern and central United States: Patterns and drivers. Global Change Biology 17(11):3312-3326.

Dockery, D. W., C. A. Pope, 3rd, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, Jr., and F. E. Speizer. 1993. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329(24):1753-1759.

Dominici, F., R. D. Peng, C. D. Barr, and M. L. Bell. 2010. Protecting human health from air pollution: Shifting from a single-pollutant to a multipollutant approach. Epidemiology 21(2):187-194.

Donoho, D. L. 2006. Compressed sensing. IEEE Transactions on Information Theory 52(4):1289-1306.

Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. Eagar, K. F. Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience 51(3):180.

Elliott, K. C. 2020. A taxonomy of transparency in science. Canadian Journal of Philosophy 1-14. ttps://doi.org/h10.1017/can.2020.21.

EPA (U.S. Environmental Protection Agency). 1982. Air Quality Criteria for Particulate Matter and Sulfur Oxides (Final Report, 1982). U.S. Environmental Protection Agency, Washington, DC.

EPA. 1987. Revisions to National Ambient Air Quality Standards for Particulate Matter. Federal Register, 52, 24634-24669. U.S. Environmental Protection Agency, Washington, DC.

EPA. 1996. Air Quality Criteria for Particulate Matter (Final Report, 1996). U.S. Environmental Protection Agency, Washington, DC.

EPA. 1997. National Ambient Air Quality Standards for Particulate Matter: Final Rule; Federal Register, 62, 38652-38760. U.S. Environmental Protection Agency, Washington, DC.

EPA. 1999. Air Quality Criteria for Particulate Matter (First External Review Draft, October). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2001. Air Quality Criteria for Particulate Matter (Second External Review Draft, March). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2002. Air Quality Criteria for Particulate Matter (Third External Review Draft, April). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2003. Air Quality Criteria for Particulate Matter (Fourth External Review Draft, June). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2004. Air Quality Criteria for Particulate Matter (Final Report). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2005. Guidelines for Carcinogen Risk Assessment. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2006a. Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volume I. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2006b. Review of the Process for Setting National Ambient Air Quality Standards for Particulate Matter. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2006c. National Ambient Air Quality Standard for Particulate Matter: Final Rule. Federal Register, 71, 61144-61233. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2007a. Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information (OAQPS Staff Paper, July). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2007b. Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria (First External Review Draft). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2007c. Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (First External Review Draft, September). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2008a. Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria (Second External Review Draft). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2008b. Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (Second External Review Draft, May). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2008c. Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur Ecological Criteria (Final Report, December). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2009. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, December). U.S. Environmental Protection Agency, Washington, DC.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

EPA. 2010. Integrated Science Assessment (ISA) for Carbon Monoxide (Final Report, January). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2011a. Policy Assessment for the Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Washington, DC.

EPA. 2011b. Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Washington, DC.

EPA. 2013a. Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants (Final Report, February). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2013b. Integrated Science Assessment (ISA) for Lead (Final Report, July). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2014. Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Washington, DC.

EPA. 2015a. Preamble to the Integrated Science Assessments (ISA). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2015b. Policy Assessment for the Review of the Ozone National Ambient Air Quality Standards. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2016. Integrated Science Assessment (ISA) for Oxides of Nitrogen—Health Criteria (Final Report, January). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2017a. Integrated Review Plan for the Secondary National Ambient Air Quality Standards for Ecological Effects of Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2017b. Integrated Science Assessment (ISA) for Sulfur Oxides—Health Criteria (Final Report, December). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2018a. Integrated Science Assessment (ISA) for Particulate Matter (First External Review Draft, October). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2018b. Integrated Review Plan for the Review of the Ozone National Ambient Air Quality Standards: External Review Draft. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2018c. Application of Systematic Review in TSCA Risk Evaluations, EPA Report No. 740-P1-8001. Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC.

EPA. 2019a. Integrated Review Plan for the Review of the Ozone National Ambient Air Quality Standards. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2019b. Integrated Science Assessment for Ozone and Related Photochemical Oxidants (External Review Draft). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2019c. Integrated Science Assessment (ISA) for Particulate Matter (Final Report, December). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2020a. Integrated Science Assessment (ISA) for Ozone and Related Photochemical Oxidants. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2020b. Integrated Science Assessment (ISA) for Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter Ecological Criteria (Final Report). U.S. Environmental Protection Agency, Washington, DC.

EPA. 2020c. ORD Staff Handbook for Developing IRIS Assessments. U.S. Environmental Protection Agency, Washington, DC.

EPA. 2021. Draft Systematic Review Protocol Supporting TSCA Risk Evaluations for Chemical Substances. U.S. Environmental Protection Agency, Washington, DC.

Ertefaie, A., and D. A. Stephens. 2010. Comparing approaches to causal inference for longitudinal data: Inverse probability weighting versus propensity scores. The International Journal of Biostatistics 6(2):Article 14.

Everitt, B., and D. C. Howell, eds. 2005. Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ: John Wiley & Sons.

Fedak, K. M., A. Bernal, Z. A. Capshaw, and S. Gross. 2015. Applying the Bradford Hill criteria in the 21st century: How data integration has changed causal inference in molecular epidemiology. Emerging Themes in Epidemiology 12(1):14.

Ferraro, P. J., J. N. Sanchirico, and M. D. Smith. 2019. Causal inference in coupled human and natural systems. Proceedings of the National Academy of Sciences 116(12):5311-5318.

Frangakis, C. E., and D. B. Rubin. 2002. Principal stratification in causal inference. Biometrics 58(1):21-29.

Frey, H. C., A. V. Diex Roux, G. Allen, J. Balmes, J. C. Chow, D. W. Dockery, J. R. Harkema, J. Kaufman, D. M. Kenski, M. Kleinman, R. L. Poirot, J. A. Sarnat, E. A. Sheppard, B. Turpin, and S. Vedal. 2018. Letter and Attachments to CASAC and to Docket EPA-HQ-ORD-2014-0859, Docket ID # EPA-HQ-ORD-2014-0859-0048. https://www.regulations.gov/document/EPA-HQ-ORD-2014-0859-0048 (accessed November 16, 2021).

Friedman, M. S., K. E. Powell, L. Hutwagner, L. M. Graham, and L. Teague. 2001. Impact of changes in transportation and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood asthma. JAMA 285(7):897-905.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Galloway, J. N., S. A. Norton, and M. R. Church. 1983. Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environmental Science and Technology 17(11):541A-545A.

Gaudel, A., O. R. Cooper, G. Ancellet, B. Barret, A. Boynard, J. P. Burrows, C. Clerbaux, P. F. Coheur, J. Cuesta, E. Cuevas, S. Doniki, G. Dufour, F. Ebojie, G. Foret, O. Garcia, M. J. Granados-Muñoz, J. W. Hannigan, F. Hase, B. Hassler, G. Huang, D. Hurtmans, D. Jaffe, N. Jones, P. Kalabokas, B. Kerridge, S. Kulawik, B. Latter, T. Leblanc, E. Le Flochmoën, W. Lin, J. Liu, X. Liu, E. Mahieu, A. McClure-Begley, J. L. Neu, M. Osman, M. Palm, H. Petetin, I. Petropavlovskikh, R. Querel, N. Rahpoe, A. Rozanov, M. G. Schultz, J. Schwab, R. Siddans, D. Smale, M. Steinbacher, H. Tanimoto, D. W. Tarasick, V. Thouret, A. M. Thompson, T. Trickl, E. Weatherhead, C. Wespes, H. M. Worden, C. Vigouroux, X. Xu, G. Zeng, and J. Ziemke. 2018. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa: Science of the Anthropocene 6:39.

Geiser, L. H., H. Root, R. J. Smith, S. E. Jovan, L. St. Clair, and K. L. Dillman. 2021. Lichen-based critical loads for deposition of nitrogen and sulfur in US forests. Environmental Pollution 291:118187.

Gilliam, F. S., D. A. Burns, C. T. Driscoll, S. D. Frey, G. M. Lovett, and S. A. Watmough. 2019. Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems. Environmental Pollution 244:560-574.

Glennan, S. S. 1996. Mechanisms and the nature of causation. Erkenntnis 44(1):49-71.

Goldman, G. T., and F. Dominici. 2019. Don’t abandon evidence and process on air pollution policy. Science (New York, N.Y.) 363(6434):1398-1400.

Goldman, G. T., J. A. Mulholland, A. G. Russell, M. J. Strickland, M. Klein, L. A. Waller, and P. E. Tolbert. 2011. Impact of exposure measurement error in air pollution epidemiology: Effect of error type in time-series studies. Environmental Health 10(1):61.

Goodman, J. E., R. L. Prueitt, S. N. Sax, L. A. Bailey, and L. R. Rhomberg. 2013. Evaluation of the causal framework used for setting national ambient air quality standards. Critical Reviews in Toxicology 43(10):829-849.

Goodman, J. E., K. Zu, C. T. Loftus, H. N. Lynch, R. L. Prueitt, I. Mohar, S. P. Shubin, and S. N. Sax. 2018. Short-term ozone exposure and asthma severity: Weight-of-evidence analysis. Environmental Research 160:391-397.

Goodman, J. E., R. L. Prueitt, R. D. Harbison, and G. T. Johnson. 2020. Systematically evaluating and integrating evidence in National Ambient Air Quality Standards reviews. Global Epidemiology 2:100019.

Goodman, J. E., R. L. Prueitt, R. D. Harbison, and G. T. Johnson. 2021. Re. In defense of the weight-of-evidence approach to literature review in the Integrated Science Assessment. Epidemiology 32(4):e12.

Grace, J. B., and K. M. Irvine. 2020. Scientist’s guide to developing explanatory statistical models using causal analysis principles. Ecology 101(4):e02962.

Grace, J. B., T. M. Anderson, H. Olff, and S. M. Scheiner. 2010. On the specification of structural equation models for ecological systems. Ecological Monographs 80(1):67-87.

Green, P. J. 2003. Introducing Highly Structured Stochastic Systems. In P. J. Green, N. L. Hjort, and S. Richardson, eds. Highly Structured Stochastic Systems (pp. 1-12). Oxford University Press.

Greenland, S. 2000. An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology 29(4):722-729.

Greenland, S., and T. Lash. 2008. Meta-analysis. In Modern epidemiology. Philadelphia, PA: Lippincott Williams & Wilkins. P. 652.

Greenland, S., J. Pearl, and J. M. Robins. 1999. Causal diagrams for epidemiologic research. Epidemiology 37-48.

Greenstone, M. 2004. Did the clean air act cause the remarkable decline in sulfur dioxide concentrations? Journal of Environmental Economics and Management 47(3):585-611.

Griffith, G. J., T. T. Morris, M. J. Tudball, A. Herbert, G. Mancano, L. Pike, G. C. Sharp, J. Sterne, T. M. Palmer, G. Davey Smith, K. Tilling, L. Zuccolo, N. M. Davies, and G. Hemani. 2020. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nature Communications 11(1):5749.

Groenwold, R. H. H., T. M. Palmer, and K. Tilling. 2021. To adjust or not to adjust? When a “confounder” is only measured after exposure. Epidemiology 32(2):194-201.

Gurevitch, J., J. Koricheva, S. Nakagawa, and G. Stewart. 2018. Meta-analysis and the science of research synthesis. Nature 555(7695):175-182.

Haber, N. A., E. Clarke-Deelder, J. A. Salomon, A. Feller, and E. A. Stuart. 2021. Impact evaluation of coronavirus disease 2019 policy: A guide to common design issues. American Journal Epidemiology 190(11):2474-2486.

Hackstadt, A. J., E. C. Matsui, D. A. L. Williams, G. B. Diette, P. N. Breysse, A. M. Butz, and R. D. Peng. 2014. Inference for environmental intervention studies using principal stratification. Statistics in Medicine 33(28):4919-4933.

Hahn, P. R., S. M. Jared, and M. C. Carlos. 2020. Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects (with discussion). Bayesian Analysis 15(3):965-2020.

Hastie, T., R. Tibshirani, J. Friedman, and J. Franklin. 2005. The elements of statistical learning: Data mining, inference and prediction. The Mathematical Intelligencer 27(2):83-85.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Health Canada. 2013a. Canadian Smog Science Assessment. Volume 1: Atmospheric Science and Environmental/Economic Impacts. Health Canada, Ottawa, Ontario.

Health Canada. 2013b. Canadian Smog Science Assessment, Volume 2: Health Effects. Health Canada, Ottawa, Ontario.

Health Canada. 2016a. Human Health Risk Assessment for Sulphur Dioxide. Water and Air Quality Bureau, Ottawa, Ontario.

Health Canada. 2016b. Human Health Risk Assessment for Ambient Nitrogen Dioxide. Water and Air Quality Bureau, Ottawa, Ontario.

Hedley, A. J., C. M. Wong, T. Q. Thach, S. Ma, T. H. Lam, and H. R. Anderson. 2002. Cardiorespiratory and all-cause mortality after restrictions on sulphur content of fuel in Hong Kong: An intervention study. Lancet 360(9346):1646-1652.

HEI (Health Effects Institute). 2003. Assessing Health Impact of Air Quality Regulations: Concepts and Methods for Accountability Research. Boston, MA: Health Effects Institute.

HEI. 2018. Comments on the Draft Integrated Science Assessment for Particulate Matter Air Pollution. https://www.regulations.gov/comment/EPA-HQ-ORD-2014-0859-0064 (accessed November 16, 2021).

HEI. 2019. Protocol for a Systematic Review and Meta-Analysis of Selected Health Effects of Long-Term Exposure to Traffic-Related Air Pollution. Boston, MA: Health Effects Institute.

HEI. 2020. Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality. Boston, MA: Health Effects Institute.

Henderson, S. B., B. Beckerman, M. Jerrett, and M. Brauer. 2007. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology 41(7):2422-2428.

Henneman, L. R. F., C. Liu, J. A. Mulholland, and A. G. Russell. 2017. Evaluating the effectiveness of air quality regulations: A review of accountability studies and frameworks. Journal of the Air & Waste Management Association 67(2):144-172.

Hernán, M. Á. 2010. The hazards of hazard ratios. Epidemiology 21(1):13-15.

Hernán, M. Á., and J. M. Robins. 2006. Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17(4):360-372.

Hernán, M. Á., and J. M. Robins. 2016. Using big data to emulate a target trial when a randomized trial is not available. American Journal of Epidemiology 183(8):758-764.

Hernán, M. Á., and J. M. Robins. 2020. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.

Hernán, M. Á., and S. L. Taubman. 2008. Does obesity shorten life? The importance of well-defined interventions to answer causal questions. International Journal of Obesity (2005) 32(Suppl 3):S8-S14.

HEW (U.S. Department of Health, Education, and Welfare). 1964. Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Office of the Surgeon General, U.S. Department of Health, Education, and Welfare, Washington, DC.

HEW. 1969. Air Quality Criteria for Sulfur Oxides. U.S. Department of Health, Education, and Welfare, Washington, DC. Higgins, J., and S. Green. 2011. Cochrane Handbook for Systematic Reviews of Interventions. https://handbook-5-1.cochrane.org (accessed November 16, 2021).

Hill, A. B. 1965. The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58:295-300.

Holland, P. W. 1986. Statistics and causal inference. Journal of the American Statistical Association 81(396):945-960.

Horn, K. J., R. Q. Thomas, C. M. Clark, L. H. Pardo, M. E. Fenn, G. B. Lawrence, S. S. Perakis, E. A. H. Smithwick, D. Baldwin, S. Braun, A. Nordin, C. H. Perry, J. N. Phelan, P. G. Schaberg, S. B. St Clair, R. Warby, and S. Watmough. 2018. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS One 13(10):e0205296.

Howard, B. E., J. Phillips, A. Tandon, A. Maharana, R. Elmore, D. Mav, A. Sedykh, K. Thayer, B. A. Merrick, V. Walker, A. Rooney, and R. R. Shah. 2020. SWIFT-Active Screener: Accelerated document screening through active learning and integrated recall estimation. Environment International 138:105623.

Hubbell, B., and D. Greenbaum. 2014. Counterpoint: Moving from potential-outcomes thinking to doing—Changing research planning to enable successful health outcomes research. American Journal of Epidemiology 180(12):1141-1144.

Hudson, A. R., D. P.C. Peters, J. M. Blair, D. L. Childers, P. T. Doran, K. Geil, M. Gooseff, N. Grimm, K. Gross, N. M. Haddad, M. E. Litvak, M. A. Pastore, J. Rudgers, O. Sala, E. W. Seabloom, G. Shaver. In press. Climate change and landscape heterogeneity imprints on multi-site dryland landscapes across the LTER Network. BioScience.

Iacus, S. M., G. King, and G. Porro. 2012. Causal inference without balance checking: Coarsened exact matching. Political Analysis 20(1):1-24.

IARC (International Agency for Research on Cancer). 1991. Preamble to the IARC Monographs. World Health Organization, Lyon, France.

IARC. 2006. Preamble: Monographs on the Identification of Carcinogenic Hazards to Humans. World Health Organization, Lyon, France.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

IARC. 2019. Preamble: Monographs on the Identification of Carcinogenic Hazards to Humans (amended 2019). World Health Organization, Lyon, France. https://monographs.iarc.who.int/wp-content/uploads/2019/07/Preamble-2019.pdf (accessed November 16, 2021).

Imbens, G. W., and D. B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge: Cambridge University Press.

Inoue, K., Q. Yan, O. A. Arah, K. Paul, D. I. Walker, D. P. Jones, and B. Ritz. 2020. Air pollution and adverse pregnancy and birth outcomes: Mediation analysis using metabolomic profiles. Current Environmental Health Reports 7(3):231-242.

IOM (Institute of Medicine). 2008. Improving the Presumptive Disability Decision-Making Process for Veterans. Washington, DC: The National Academies Press.

IOM. 2012. Adverse Effects of Vaccines: Evidence and Causality. Washington, DC: The National Academies Press.

IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.

IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press.

Jacob, D. J., and D. A. Winner. 2009. Effect of climate change on air quality. Atmospheric Environment 43(1):51-63.

Jaffe, D. A., O. R. Cooper, A. M. Fiore, B. H. Henderson, G. S. Tonnesen, A. G. Russell, D. K. Henze, A. O. Langford, M. Lin, and T. Moore. 2018. Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa (Wash DC) 6(1):56.

Jerrett, M., M. C. Turner, B. S. Beckerman, C. A. Pope, A. van Donkelaar, R. V. Martin, M. Serre, D. Crouse, S. M. Gapstur, D. Krewski, W. R. Diver, P. F. Coogan, G. D. Thurston, and R. T. Burnett. 2017. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environmental Health Perspectives 125(4):552-559.

Joffe, M. M., T. R. Ten Have, H. I. Feldman, and S. E. Kimmel. 2004. Model selection, confounder control, and marginal structural models: Review and new applications. The American Statistician 58(4):272-279.

Johnson, G. 2021. Comment on the Supplement to the 2019 Integrated Science Assessment for Particulate Matter (External Review Draft), National Council for Air and Stream Improvement (NCASI). https://www.regulations.gov/comment/EPA-HQ-ORD-2014-0859-0076 (accessed December 3, 2021).

Kampfrath, T., A. Maiseyeu, Z. Ying, Z. Shah, J. A. Deiuliis, X. Xu, N. Kherada, R. D. Brook, K. M. Reddy, N. P. Padture, S. Parthasarathy, L. C. Chen, S. Moffatt-Bruce, Q. Sun, H. Morawietz, and S. Rajagopalan. 2011. Chronic fine particulate matter exposure induces systemic vascular dysfunction via NADPH oxidase and TLR4 pathways. Circulation Research 108(6):716-726.

Keil, A. P., J. P. Buckley, and A. E. Kalkbrenner. 2021. Bayesian g-computation for estimating impacts of interventions on exposure mixtures: Demonstration with metals from coal-fired power plants and birth weight. American Journal of Epidemiology 190(12):2647-2657.

Kent, D. M., P. M. Rothwell, J. P. A. Ioannidis, D. G. Altman and R. A. Hayward. 2010. Assessing and reporting heterogeneity in treatment effects in clinical trials: A proposal. Trials 1-11.

Kent, D. M., J. K. Paulus, D. van Klaveren, R. D’Agostino, S. Goodman, R. Hayward, J. P. A. Ioannidis, B. Patrick-Lake, S. Morton, M. Pencina, G. Raman, J. S. Ross, H. P. Selker, R. Varadhan, A. Vickers, J. B. Wong, and E. W. Steyerberg. 2020. The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement. Annals of Internal Medicine 172(1):35-45.

Kim, C., L. R. F. Henneman, C. Choirat, and C. M. Zigler. 2020. Health effects of power plant emissions through ambient air quality. Journal of the Royal Statistical Society: Series A (Statistics in Society) 183(4):1677-1703.

Koustas, E., J. Lam, P. Sutton, P. I. Johnson, D. S. Atchley, S. Sen, K. A. Robinson, D. A. Axelrad, and T. J. Woodruff. 2014. The Navigation Guide - evidence-based medicine meets environmental health: Systematic review of nonhuman evidence for PFOA effects on fetal growth. Environmental Health Perspectives 122(10):1015-1027.

Kraemer, H. C., G. T. Wilson, C. G. Fairburn, and W. S. Agras. 2002. Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry 59(10):877-883.

Krieger, N., and G. Davey Smith. 2016. The tale wagged by the DAG: Broadening the scope of causal inference and explanation for epidemiology. International Journal of Epidemiology 45(6):1787-1808.

Kunzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu. 2019. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences 116(10):4156-4165.

Lam, J., E. Koustas, P. Sutton, P. I. Johnson, D. S. Atchley, S. Sen, K. A. Robinson, D. A. Axelrad, and T. J. Woodruff. 2014. The Navigation Guide—Evidence-based medicine meets environmental health: Integration of animal and human evidence for PFOA effects on fetal growth. Environmental Health Perspectives 122(10):1040-1051.

Lash, T. L., M. P. Fox, and A. K. Fink. 2009. Applying Quantitative Bias Analysis to Epidemiologic Data. Dordrecht: Springer.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Lash, T. L., M. P. Fox, R. F. MacLehose, G. Maldonado, L. C. McCandless, and S. Greenland. 2014. Good practices for quantitative bias analysis. International Journal of Epidemiology 43(6):1969-1985.

Lash, T. L., M. P. Fox, D. Cooney, Y. Lu, and R. A. Forshee. 2016. Quantitative bias analysis in regulatory settings. American Journal of Public Health 106(7):1227-1230.

Laubach, Z. M., E. J. Murray, K. L. Hoke, R. J. Safran, and W. Perng. 2021. A biologist’s guide to model selection and causal inference. Proceedings of the Royal Society B: Biological Sciences 288(1943):20202815.

Lawlor, D. A., K. Tilling, and G. Davey Smith. 2016. Triangulation in aetiological epidemiology. International Journal of Epidemiology 45(6):1866-1886.

LeBauer, D. S., and K. K. Treseder. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371-379.

Lee, K., D. S. Small, and F. Dominici. 2021. Discovering heterogeneous exposure effects using randomization inference in air pollution studies. Journal of the American Statistical Association 116(534):569-580.

Lefohn, A. S., J. A. Lawrence, and R. J. Kohut. 1988. A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmospheric Environment 22:1229-1240.

Lefohn, A. S., W. Jackson, D. S. Shadwick, and H. P. Knudsen. 1997. Effect of surface ozone exposures on vegetation grown in the Southern Appalachian Mountains: Identification of possible areas of concern. Atmospheric Environment 31(11):1695-1708.

Lehmann, J., D. Solomon, F.-J. Zhao, and S. P. McGrath. 2008. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environmental Science & Technology 42(10):3550-3555.

Li, F., L. E. Thomas, and F. Li. 2019. Addressing extreme propensity scores via the overlap weights. American Journal of Epidemiology 188(1):250-257.

Li, F., P. Ding, and F. Mealli. 2022. Bayesian causal inference: A critical review. Philosophical Transactions A.

Liu, C., L. K. Fonken, A. Wang, A. Maiseyeu, Y. Bai, T. Y. Wang, S. Maurya, Y. A. Ko, M. Periasamy, T. Dvonch, M. Morishita, R. D. Brook, J. Harkema, Z. Ying, B. Mukherjee, Q. Sun, R. J. Nelson, and S. Rajagopalan. 2014. Central IKKß inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes. Particle and Fibre Toxicology 11:53.

Liu, S. H., J. F. Bobb, K. H. Lee, C. Gennings, B. Claus Henn, D. Bellinger, C. Austin, L. Schnaas, M. M. Tellez-Rojo, H. Hu, R. O. Wright, M. Arora, and B. A. Coull. 2018. Lagged kernel machine regression for identifying time windows of susceptibility to exposures of complex mixtures. Biostatistics 19(3):325-341.

Liu, W., S. J. Kuramoto, and E. A. Stuart. 2013. An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research. Prevention Science: The Official Journal of the Society for Prevention Research 14(6):570-580.

Lopez, M. J., and R. Gutman. 2017. Estimation of causal effects with multiple treatments: A review and new ideas. Statistical Science 32(3):432-454.

Lunceford, J. K., and M. Davidian. 2004. Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine 23(19):2937-2960.

Machamer, P., L. Darden, and C. F. Craver. 2000. Thinking about mechanisms. Philosophy of Science 67(1):1-25.

Malm, W. C. 2016. Visibility: The Seeing of Near and Distant Landscape Features. Amsterdam: Elsevier.

Malm, W. C., B. Schichtel, J. Molenar, A. Prenni, and M. Peters. 2019. Which visibility indicators best represent a population’s preference for a level of visual air quality? Journal of the Air & Waste Management Association 69(2):145-161.

Marchant, G. E. 2008. Setting air quality standards in the postgenomic era. In Genomics and Environmental Regulation: Science, Ethics, and Law, edited by R. R. Sharp, G. E. Marchant, and J. A. Grodsky. Baltimore, MD: Johns Hopkins University Press. Pp. 116-138.

Matyssek, R., A. R. Kozovits, G. Wieser, J. King, and H. Rennenberg. 2017. Woody-plant ecosystems under climate change and air pollution—Response consistencies across zonobiomes? Tree Physiology 37(6):706-732.

Maxwell, J. 1865. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155:459-512.

McGarity, T. O., and S. A. Shapiro. 2013. Regulatory science in rulemaking and tort: Unifying the weight of evidence approach. Wake Forest Journal of Law and Policy 3(1):65-103.

Middleton, W. E. K. 1957. Vision through the atmosphere. In Geophysics II. Vol. 10. Berlin: Springer. Pp. 254-287.

Mie, G. 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik 330:377-445.

Milchunas, D. G., and W. K. Lauenroth. 1995. Inertia in plant community structure: State changes after cessation of nutrient-enrichment stress. Ecological Applications 5(2):452-458.

Miller, F. W., E. V. Hess, D. J. Clauw, P. A. Hertzman, T. Pincus, R. M. Silver, M. D. Mayes, J. Varga, T. A. Medsger, Jr., and L. A. Love. 2000. Approaches for identifying and defining environmentally associated rheumatic disorders. Arthritis and Rheumatism 43(2):243-249.

Molitor, J., M. Papathomas, M. Jerrett, and S. Richardson. 2010. Bayesian profile regression with an application to the National Survey of Children’s Health. Biostatistics 11(3):484-498.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Moore, K., R. Neugebauer, F. Lurmann, J. Hall, V. Brajer, S. Alcorn, and I. Tager. 2010. Ambient ozone concentrations and cardiac mortality in Southern California 1983-2000: Application of a new marginal structural model approach. American Journal of Epidemiology 171(11):1233-1243.

Morawska, L., P. K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova, A. Bedini, F. Chai, B. Christensen, M. Dunbabin, J. Gao, G. S. W. Hagler, R. Jayaratne, P. Kumar, A. K. H. Lau, P. K. K. Louie, M. Mazaheri, Z. Ning, N. Motta, B. Mullins, M. M. Rahman, Z. Ristovski, M. Shafiei, D. Tjondronegoro, D. Westerdahl, and R. Williams. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International 116:286-299.

Morgan, R. L., P. Whaley, K. A. Thayer, and H. J. Schunemann. 2018. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environment International 121(Pt 1):1027-1031.

Naimi, A. I., J. S. Kaufman, and R. F. MacLehose. 2014. Mediation misgivings: Ambiguous clinical and public health interpretations of natural direct and indirect effects. International Journal of Epidemiology 43(5):1656-1661.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2017. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: The National Academies Press.

NASEM. 2018. Public Health Consequences of E-Cigarettes. Washington, DC: The National Academies Press.

NASEM. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press.

NASEM. 2020. Review of the Draft NTP monograph: Systematic Review of Fluoride Exposure and Neurodevelopmental and Cognitive Health Effects. Washington, DC: The National Academies Press.

NASEM. 2021. The Use of Systematic Review in EPA’s Toxic Substances Control Act Risk Evaluations. Washington, DC: The National Academies Press.

NASEM. 2022. Review of U.S. EPA’s ORD Staff Handbook for Developing IRIS Assessments: 2020 Version. Washington, DC: The National Academies Press.

Nguyen, T. Q., I. Schmid, and E. A. Stuart. 2021. Clarifying causal mediation analysis for the applied researcher: Defining effects based on what we want to learn. Psychological Methods 26(2):255-271.

Nie, X., and S. Wager. 2020. Quasi-Oracle estimation of heterogeneous treatment effects. arXiv:1712.04912v4.

Nieuwenhuijsen, M. J. 2003. Exposure Assessment in Occupational and Environmental Eepidemiology, Oxford Medical Publications. Oxford: Oxford University Press.

Nilsonn, J., and P. Grennfelt. 1988. Critical Loads for Sulphur and Nitrogen. Paper presented at Report from Skokloster Workshop, Skokloster, Sweden.

NPS ARD (National Park Service Air Resources Division). 2015. Comment on the U.S. Environmental Protection Agency’s (EPA’s) Draft Integrated Review Plan for the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen (NOx) and Oxides of Sulfur (SOx). https://www.regulations.gov/comment/EPA-HQ-OAR-2014-0128-0004 (accessed November 16, 2021).

NRC (National Research Council). 2007. Models in Environmental Regulatory Decision Making. Washington, DC: The National Academies Press.

NRC. 2009. Science and Decisions: Advancing Risk Assessment. Washington, DC: The National Academies Press.

NRC. 2012. Exposure Science in the 21st Century: A Vision and a Strategy. Washington, DC: The National Academies Press.

NTP (National Toxicology Program). 2019. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration. Research Triangle Park, NC: U.S. Department of Health and Human Services.

Oreskes, N., K. Shrader-Frechette, and K. Belitz. 1994. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 263(5147):641-646.

Oulhote, Y., B. Coull, MA. Bind, F. Debes, F. Nielsen, I. Tamayo, P. Weihe, and P. Grandjean. 2019. Joint and independent neurotoxic effects of early life exposures to a chemical mixture: A multi-pollutant approach combining ensemble learning and G-computation. Environmental Epidemiology 3(5):e063.

Papadogeorgou, G., F. Mealli, and C. M. Zigler. 2019. Causal inference with interfering units for cluster and population level treatment allocation programs. Biometrics 75(3):778-787.

Pardo, L. H., M. E. Fenn, C. L. Goodale, L. H. Geiser, C. T. Driscoll, E. B. Allen, J. S. Baron, R. Bobbink, W. D. Bowman, C. M. Clark, B. Emmett, F. S. Gilliam, T. L. Greaver, S. J. Hall, E. A. Lilleskov, L. Liu, J. A. Lynch, K. J. Nadelhoffer, S. S. Perakis, M. J. Robin-Abbott, J. L. Stoddard, K. C. Weathers, and R. L. Dennis. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications 21(8):3049-3082.

Pardo, L. H., M. J. Robin-Abbott, M. E. Fenn, C. L. Goodale, L. H. Geiser, C. T. Driscoll, E. B. Allen, J. S. Baron, R. Bobbink, W. D. Bowman, and C. M. Clark. 2016. Effects and empirical critical loads of nitrogen for ecoregions of the United States. In Critical Loads and Dynamic Risk Assessments, edited by W. de Vries, J-P. Hettelingh, and M. Posch. Dordrecht, The Netherlands: Springer. Pp. 129-169.

Park, E. S., and M.-S. Oh. 2018. Accounting for uncertainty in source-specific exposures in the evaluation of health effects of pollution sources on daily cause-specific mortality. Environmetrics 29(1):e2484.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Park, E. S., P. K. Hopke, M. S. Oh, E. Symanski, D. Han, and C. H. Spiegelman. 2014. Assessment of source-specific health effects associated with an unknown number of major sources of multiple air pollutants: A unified Bayesian approach. Biostatistics 15(3):484-497.

Park, E. S., P. K. Hopke, I. Kim, S. Tan, and C. H. Spiegelman. 2018. Bayesian spatial multivariate receptor modeling for multisite multipollutant data. Technometrics 60(3):306-318.

Park, E. S., E.-K. Lee, and M.-S. Oh. 2021. Bayesian multivariate receptor modeling software: BNFA and bayesMRM. Chemometrics and Intelligent Laboratory Systems 211:104280.

Pashley, N., and M-A. Bind. 2022. Causal inference for multiple treatments using fractional factorial designs. arXiv: 1905.07596v7.

Peacock, M. 2006, December 7. Process for Reviewing National Ambient Air Quality Standards (Memorandum). U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2020-09/documents/memo_process_for_reviewing_naaqs.pdf (accessed December 10, 2022).

Peacock, M. 2007, April 17. Process for Reviewing National Ambient Air Quality Standards. U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2020-09/documents/peacock_4_17_07_memo.pdf (accessed December 10, 2022).

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. Cambridge: Cambridge University Press.

Pearl, J. 2021. The causal foundations of structural equation modeling. https://ftp.cs.ucla.edu/pub/stat_ser/r370.pdf (accessed November 16, 2021).

Percie du Sert, N., V. Hurst, A. Ahluwalia, S. Alam, M. T. Avey, M. Baker, W. J. Browne, A. Clark, I. C. Cuthill, U. Dirnagl, M. Emerson, P. Garner, S. T. Holgate, D. W. Howells, N. A. Karp, S. E. Lazic, K. Lidster, C. J. MacCallum, M. Macleod, E. J. Pearl, O. H. Petersen, F. Rawle, P. Reynolds, K. Rooney, E. S. Sena, S. D. Silberberg, T. Steckler, and H. Wurbel. 2020. The ARRIVE Guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology 18(7):e3000410.

Perković, E., J. Textor, M. Kalisch, and M. Maathuis. 2015. A Complete Generalized Adjustment Criterion. Uncertainty in Artificial Intelligence. Proceedings of the 31st Conference, UAI 2015.

Peters, J., P. Bühlmann, and N. Meinshausen. 2016. Causal inference by using invariant prediction: Identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(5):947-1012.

Petersen, M.L. and M. J. van der Laan. 2014. Causal models and learning from data: Integrating causal modeling and statistical estimation. Epidemiology 25(3):418-426.

Pope, C. A. 1996. Particulate pollution and health: A review of the Utah valley experience. Journal of Exposure Analysis and Environmental Epidemiology 6(1):23-34.

Pope, C. A., M. J. Thun, M. M. Namboodiri, D. W. Dockery, J. S. Evans, F. E. Speizer, and C. W. Heath, Jr. 1995. Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American Journal of Respiratory and Critical Care Medicine 151(3 Pt 1):669-674.

Pope, C. A., D. L. Rodermund and M. M. Gee. 2007. Mortality effects of a copper smelter strike and reduced ambient sulfate particulate matter air pollution. Environmental Health Perspective 115(5):679-683.

Pope, C. A., M. C. Turner, R. T. Burnett, M. Jerrett, S. M. Gapstur, W. R. Diver, D. Krewski, and R. D. Brook. 2015. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circulation Research 116(1):108-115.

Powers, S. M., and S. E. Hampton. 2019. Open science, reproducibility, and transparency in ecology. Ecological Applications 29(1):e01822.

Powers, S., J. Qian, K. Jung, A. Schuler, N. H. Shah, T. Hastie, and R. Tibshirani. 2018. Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine 37(11):1767-1787.

Public Health and Medical Organizations. 2018. Joint Comments on the first External Review Draft of the Integrated Science Assessment for Particulate Matter. https://www.regulations.gov/comment/EPA-HQ-ORD-2014-0859-0057 (accessed November 16, 2021).

Rice, K. C., T. M. Scanlon, J. A. Lynch, and B. J. Cosby. 2014. Decreased atmospheric sulfur deposition across the Southeastern U.S.: When will watersheds release stored sulfate? Environmental Science & Technology 48(17):10071-10078.

Rich, D. Q., H. M. Kipen, W. Huang, G. Wang, Y. Wang, P. Zhu, P. Ohman-Strickland, M. Hu, C. Philipp, S. Diehl, S. Lu, J. Tong, J. Gong, D. Thomas, T. Zhu, and J. Zhang. 2012. Association between changes in air pollution levels during the Beijing Olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA 307(19):2068-2078.

Richardson, A., M. G. Hudgens, P. B. Gilbert, and J. P. Fine. 2014. Nonparametric bounds and sensitivity analysis of treatment effects. Statistical Science: A Review Journal of the Institute of Mathematical Statistics 29(4):596-618.

Richardson, T. S., and J. M. Robins. 2013. Single-World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality. Center for the Statistics and the Social Sciences, University of Washington Series.

Richmond-Bryant, J. 2020. In defense of the weight-of-evidence approach to literature review in the Integrated Science Assessment. Epidemiology 31(6):755-757.

Robins, J. M., M. Á. Hernán, and B. Brumback. 2000. Marginal structural models and causal inference in epidemiology. Epidemiology 11(5):550-560.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Rose, S., and D. Rizopoulos. 2020. Machine learning for causal inference in biostatistics. Biostatistics 21(2):336-338.

Rosenbaum, P. R. 2005. Sensitivity Analysis in observational studies. In Encyclopedia of Statistics in Behavioral Science. Vol. 4, edited by B. S. Everitt and D. C. Howell. Chichester: John Wiley & Sons. Pp. 1809-1814.

Rosenbaum, P. R., and D. B. Rubin. 1983a. The central role of the propensity score in observational studies for causal effects. Biometrika 70(1):41-55.

Rosenbaum, P. R., and D. B. Rubin. 1983b. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. Journal of the Royal Statistical Society: Series B (Methodological) 45(2):212-218.

Rubin, D. B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66(5):688-701.

Rubin, D. B. 1978. Bayesian inference for causal effects: The role of randomization. The Annals of Statistics 6(1):34-58.

Rubin, D. B. 2008. For objective causal inference, design trumps analysis. Annals of Applied Statistics 2:808-840

Salmon, W. 1984. Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University Press.

Samet, J., H. C. Frey, P. K. Hopke, A. V. Diez Roux, J. D. Crapo, F. Speizer, and J. D. Brain. 2018. Letter to Acting Administrator Andrew Wheeler, Docket ID #EPA-HQ-ORD-2014-0859-0042. https://www.regulations.gov/document/EPA-HQ-ORD-2014-0859-0042 (accessed November 16, 2021).

Savitz, D. A., G. A. Wellenius, and T. A. Trikalinos. 2019. The problem with mechanistic risk of bias assessments in evidence synthesis of observational studies and a practical alternative: Assessing the impact of specific sources of potential bias. American Journal of Epidemiology 188(9):1581-1585.

Scharfstein, D. O., A. Rotnitzky, and J. M. Robins. 1999. Adjusting for nonignorable drop-out using semiparametric non-response models. Journal of the American Statistical Association 94(448):1096-1120.

Schmid, C. H., T. Stijnen, and I. R. White. 2021. Handbook of meta-analysis. 1st ed. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. Boca Raton, FL: Taylor and Francis.

Schneeweiss, S., J. A. Rassen, R. J. Glynn, J. Avorn, H. Mogun, and M. A. Brookhart. 2009. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology (Cambridge, Mass.) 20(4):512-522.

Schneider, K., M. Schwarz, I. Burkholder, A. Kopp-Schneider, L. Edler, A. Kinsner-Ovaskainen, T. Hartung, and S. Hoffmann. 2009. “ToxRTool,” a new tool to assess the reliability of toxicological data. Toxicology Letters 189(2):138-144.

Schulz, A., and M. E. Northridge. 2004. Social determinants of health: Implications for environmental health promotion. Health Education & Behavior 31(4):455-471.

Schünemann, H., J. Brożek, G. Guyatt, and A. Oxman, eds. 2013. GRADE Handbook for Grading Quality of Evidence and Strength of Recommendations. https://gdt.gradepro.org/app/handbook/handbook.html (accessed November 16, 2021).

Schwartz, J. 1993. Air pollution and daily mortality in Birmingham, Alabama. American Journal of Epidemiology 137(10):1136-1147.

Schwartz, J., and A. Marcus. 1990. Mortality and air pollution in London: A time series analysis. American Journal of Epidemiology 131(1):185-194.

Schwartz, J., and D. W. Dockery. 1992. Increased mortality in Philadelphia associated with daily air pollution concentrations. American Review of Respiratory Disease 145(3):600-604.

Schwartz, J., E. Austin, M.-A. Bind, A. Zanobetti, and P. Koutrakis. 2015. Estimating causal associations of fine particles with daily deaths in Boston: Table 1. American Journal of Epidemiology 182(7):644-650.

Schwartz, J., M.-A. Bind, and P. Koutrakis. 2017. Estimating causal effects of local air pollution on daily deaths: Effect of low levels. Environmental Health Perspectives 125(1):23-29.

Schwartz, J., K. Fong, and A. Zanobetti. 2018. A national multicity analysis of the causal effect of local pollution, NO2, and PM2.5 on mortality. Environmental Health Perspectives 126(8):087004.

Seabloom, E. W., E. Batzer, J. M. Chase, W. Stanley Harpole, P. B. Adler, S. Bagchi, J. D. Bakker, I. C. Barrio, L. Biederman, E. H. Boughton, M. N. Bugalho, M. C. Caldeira, J. A. Catford, P. Daleo, N. Eisenhauer, A. Eskelinen, S. Haider, L. M. Hallett, I. Svala Jónsdóttir, K. Kimmel, M. Kuhlman, A. MacDougall, C. D. Molina, J. L. Moore, J. W. Morgan, R. Muthukrishnan, T. Ohlert, A. C. Risch, C. Roscher, M. Schütz, G. Sonnier, P. M. Tognetti, R. Virtanen, P. A. Wilfahrt, and E. T. Borer. 2021. Species loss due to nutrient addition increases with spatial scale in global grasslands. Ecology Letters 24(10):2100-2112.

Shahar, E. 2013. A new criterion for confounder selection? Neither a confounder nor science. Journal of Evaluation in Clinical Practice 19(5):984-986.

Shen, H., Y. Chen, Y. Li, A. G. Russell, Y. Hu, L. R. F. Henneman, M. T. Odman, J.-S. Shih, D. Burtraw, S. Shao, H. Yu, M. Qin, Z. Chen, A. S. Lawal, G. K. Pavur, M. A. Brown, and C. T. Driscoll. 2019. Relaxing energy policies on top of climate change will significantly undermine states’ efforts to attain U.S. ozone standards. One Earth 1(2):229-239.

Shi, L., A. Zanobetti, I. Kloog, B. A. Coull, P. Koutrakis, S. J. Melly, and J. D. Schwartz. 2016. Low-concentration PM2.5 and mortality: Estimating acute and chronic effects in a population-based study. Environmental Health Perspectives 124(1):46-52.

Shrier, I., and R. W. Platt. 2008. Reducing bias through directed acyclic graphs. BMC Medical Research Methodology 8:70.

Simkin, S. M., E. B. Allen, W. D. Bowman, C. M. Clark, J. Belnap, M. L. Brooks, B. S. Cade, S. L. Collins, L. H. Geiser, F. S. Gilliam, S. E. Jovan, L. H. Pardo, B. K. Schulz, C. J. Stevens, K. N. Suding, H. L. Throop, and D. M. Waller. 2016. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences 113(15):4086-4091.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Smith, R. L., B. Xu, and P. Switzer. 2009. Reassessing the relationship between ozone and short-term mortality in U.S. urban communities. Inhalation Toxicology 21(Suppl 2):37-61.

Sorek-Hamer, M., A. C. Just, and I. Kloog. 2016. Satellite remote sensing in epidemiological studies. Current Opinion in Pediatrics 28(2):228-234.

Spirtes, P., C. Glymour, and R. Scheines. 1993. Causation, Prediction, and Search. 1st ed. Lecture Notes in Statistics 81. New York: Springer New York.

Spirtes, P., C. Glymour, and R. Scheines. 2016. Causation, prediction, and search. https://philarchive.org/archive/SPICPA-2 (accessed November 16, 2021).

Stanghellini, E., and M. Doretti. 2019. On marginal and conditional parameters in logistic regression models. Biometrika 106(3):732-739.

Steenland, K., M. K. Schubauer-Berigan, R. Vermeulen, R. M. Lunn, K. Straif, S. Zahm, P. Stewart, W. D. Arroyave, S. S. Mehta, and N. Pearce. 2020. Risk of bias assessments and evidence syntheses for observational epidemiologic studies of environmental and occupational exposures: Strengths and limitations. Environmental Health Perspectives 128(9):095002.

Stitelman, O. M., V. De Gruttola, and M. J. van der Laan. 2012. A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis. The International Journal of Biostatistics 8(1).

Stroup, D. F., J. A. Berlin, S. C. Morton, I. Olkin, G. D. Williamson, D. Rennie, D. Moher, B. J. Becker, T. A. Sipe, and S. B. Thacker. 2000. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008-2012.

Stuart, E. A. 2010. Matching methods for causal inference: A review and a look forward. Statistical Science 25(1):1-21.

Stuart, E. A., I. Schmid, T. Nguyen, E. Sarker, A. Pittman, K. Benke, K. Rudolph, E. Badillo-Goicoechea, and J. M. Leoutsakos. 2022. Assumptions not often assessed or satisfied in published mediation analyses in psychology and psychiatry. Epidemiologic Reviews 43(1):48-52.

Szpiro, A. A., and C. J. Paciorek. 2013. Measurement error in two-stage analyses, with application to air pollution epidemiology. Environmetrics 24(8):501-517.

Szpiro, A. A., C. J. Paciorek, and L. Sheppard. 2011. Does more accurate exposure prediction necessarily improve health effect estimates? Epidemiology 22(5):680-685.

The Adirondack Council. 2015. Comments on the Draft Integrated Review Plan for the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur from The Adirondack Council, Appalachian Mountain Club, Environmental Defense Fund, and National Parks Conservation Association. https://www.regulations.gov/comment/EPA-HQ-OAR-2014-0128-0007 (accessed November 16, 2021).

Thompson, S. G., and J. P. Higgins. 2002. How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine 21(11):1559-1573.

Thurston, G. D., H. Kipen, I. Annesi-Maesano, J. Balmes, R. D. Brook, K. Cromar, S. De Matteis, F. Forastiere, B. Forsberg, M. W. Frampton, J. Grigg, D. Heederik, F. J. Kelly, N. Kuenzli, R. Laumbach, A. Peters, S. T. Rajagopalan, D. Rich, B. Ritz, J. M. Samet, T. Sandstrom, T. Sigsgaard, J. Sunyer, and B. Brunekreef. 2017. A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. The European Respiratory Journal 49(1):1600419.

Tonne, C., S. Beevers, B. Armstrong, F. Kelly, and P. Wilkonson. 2008. Air pollution and mortality benefits of the London Congestion Charge: Spatial and socioeconomic inequalities. Occupational & Environmental Medicine 65(9):620-627.

Turner, M. C., M. Jerrett, C. A. Pope, 3rd, D. Krewski, S. M. Gapstur, W. R. Diver, B. S. Beckerman, J. D. Marshall, J. Su, D. L. Crouse, and R. T. Burnett. 2016. Long-term ozone exposure and mortality in a large prospective study. American Journal of Respiratory and Critical Care Medicine 193(10):1134-1142.

Turner, R. M., D. J. Spiegelhalter, G. C. Smith, and S. G. Thompson. 2009. Bias modelling in evidence synthesis. Journal of the Royal Statistical Society: Series A (Statistics in Society) 172(1):21-47.

USGCRP (United States Global Change Research Program). 2018a. Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program, Washington, DC.

USGCRP. 2018b. Climate Science Special Report: Fourth National Climate Assessment, Volume II. U.S. Global Change Research Program, Washington, DC.

Valeri, L., and T. J. VanderWeele. 2013. Mediation analysis allowing for exposure–mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods 18(2):137-150.

van de Hulst, H. C. 1958. Light scattering by small particles. Quarterly Journal of the Royal Meteorological Society 84(360):198-199.

Van der Laan, M. J., and S. Rose. 2011. Targeted Learning, Springer Series in Statistics. New York: Springer New York.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Van der Laan, M. J., E. C. Polley, and A. E. Hubbard. 2007. Super learner. Statistical Applications in Genetics and Molecular Biology 6:Article 25.

Van der Zander, B., M. Liskiewicz, and J. Textor. 2014. Constructing Separators and Adjustment Sets in Ancestral Graphs. https://auai.org/uai2014/proceedings/individuals/209.pdf (accessed December 10, 2022).

Vandenbroucke, J. P., A. Broadbent, and N. Pearce. 2016. Causality and causal inference in epidemiology: The need for a pluralistic approach. International Journal of Epidemiology 45(6):1776-1786.

VanderWeele, T. J. 2015. Explanation in causal inference: developments in mediation and interaction. Oxford: Oxford University Press.

VanderWeele, T. J. 2016a. Explanation in causal inference: Developments in mediation and interaction. International Journal of Epidemiology 45(6):1904-1908.

VanderWeele, T. J. 2016b. Mediation analysis: A practitioner’s guide. Annual Review of Public Health 37:17-32.

VanderWeele, T. J. 2019. Principles of confounder selection. European Journal of Epidemiology 34(3):211-219.

VanderWeele, T. J., and P. Ding. 2017. Sensitivity analysis in observational research: Introducing the E-value. Annals of Internal Medicine 167(4):268-274.

VanderWeele, T. J., and I. Shpitser. 2011. A new criterion for confounder selection. Biometrics 67(4):1406-1413.

VanderWeele, T. J., and I. Shpitser. 2013. On the definition of a confounder. Annals of Statistics 41(1):196-220.

VanderWeele, T. J., J. W. Jackson, and S. Li. 2016. Causal inference and longitudinal data: A case study of religion and mental health. Social Psychiatry and Psychiatric Epidemiology 51(11):1457-1466.

Vansteelandt, S., and M. Joffe. 2014. Structural nested models and G-estimation: The partially realized promise. Statistical Science 29(4):707-731.

Vansteelandt, S., and N. Keiding. 2011. Invited commentary: G-computation—Lost in translation? American Journal of Epidemiology 173(7):739-742.

Vansteelandt, S., M. Bekaert, and G. Claeskens. 2012. On model selection and model misspecification in causal inference. Statistical Methods in Medical Research 21(1):7-30.

Visconti, G., and J. R. Zubizarreta. 2018. Handling limited overlap in observational studies with cardinality matching. Observational Studies 4(1):217-249.

von Elm, E., D. G. Altman, M. Egger, S. J. Pocock, P. C. Gotzsche, J. P. Vandenbroucke, and S. Initiative. 2007. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Medicine 4(10):e296.

von Schneidemesser, E., C. Driscoll, H. E. Rieder, and L. D. Schiferl. 2020. How will air quality effects on human health, crops and ecosystems change in the future? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2183):20190330.

Wager, S., and S. Athey. 2018. Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association 113(523):1228-1242.

Wang, C., G. Parmigiani, and F. Dominici. 2012. Bayesian effect estimation accounting for adjustment uncertainty. Biometrics 68(3):661-671.

Wang, C., F. Dominici, G. Parmigiani, and C. M. Zigler. 2015. Accounting for uncertainty in confounder and effect modifier selection when estimating average causal effects in generalized linear models. Biometrics 71(3):654-665.

Warby, R. A. F., C. E. Johnson, and C. T. Driscoll. 2009. Continuing acidification of organic soils across the Northeastern USA: 1984-2001. Soil Science Society of America Journal 73(1):274-284.

Weisskopf, M. G., M.-A. Kioumourtzoglou, and A. L. Roberts. 2015. Air pollution and autism spectrum disorders: Causal or confounded? Current Environmental Health Reports 2(4):430-439.

Westreich, D., J. K. Edwards, C. R. Lesko, S. R. Cole, and E. A. Stuart. 2019. Target validity and the hierarchy of study designs. American Journal of Epidemiology 188(2):438-443.

Weuve, J., S. K. Sagiv, and M. P. Fox. 2018. Quantitative bias analysis for collaborative science. Epidemiology (Cambridge, Mass.) 29(5):627-630.

Whaley, P., M. Nieuwenhuijsen, and J. Burns, eds. 2021. Update of the WHO global air quality guidelines: Systematic reviews. Environment International special issue.

Whiting, P., J. Savovic, J. P. Higgins, D. M. Caldwell, B. C. Reeves, B. Shea, P. Davies, J. Kleijnen, R. Churchill, and ROBIS Group. 2016. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. Journal of Clinical Epidemiology 69:225-234.

WHO (World Health Organization). 2014. WHO Handbook for Guideline Development, 2nd ed. World Health Organization, Geneva.

WHO. 2021. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization, Geneva.

Wilson, A., and B. J. Reich. 2014. Confounder selection via penalized credible regions. Biometrics 70(4):852-861.

Wing, C., K. Simon, and R. A. Bello-Gomez. 2018. Designing difference in difference studies: Best practices for public health policy research. Annual Review of Public Health 39(1):453-469.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

Woodruff, T. J., and P. Sutton. 2014. The Navigation Guide systematic review methodology: A rigorous and transparent method for translating environmental health science into better health outcomes. Environmental Health Perspectives 122(10):1007-1014.

Wu, X., D. Braun, J. Schwartz, M. A. Kioumourtzoglou, and F. Dominici. 2020. Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly. Science Advances 6(29):eaba5692.

Xia, J., and S. Wan. 2008. Global response patterns of terrestrial plant species to nitrogen addition. The New Phytologist 179(2):428-439.

Xie, X., I. Semanjski, S. Gautama, E. Tsiligianni, N. Deligiannis, R. Rajan, F. Pasveer, and W. Philips. 2017. A review of urban air pollution monitoring and exposure assessment methods. ISPRS International Journal of Geo-Information 6(12):389.

Yarza, S., L. Hassan, A. Shtein, D. Lesser, L. Novack, I. Katra, I. Kloog, and V. Novack. 2020. Novel approaches to air pollution exposure and clinical outcomes assessment in environmental health studies. Atmosphere 11(2):122.

Yi, G. Y., A. Delaigle, and P. Gustafson. 2021. Handbook of Measurement Error Models. Boca Raton, FL: CRC Press.

Young, S. S., R. L. Smith, and K. K. Lopiano. 2017. Air quality and acute deaths in California, 2000-2012. Regulatory Toxicology and Pharmacology 88:173-184.

Zaehle, S. 2013. Terrestrial nitrogen–carbon cycle interactions at the global scale. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1621):20130125.

Zanobetti, A., and J. Schwartz. 2011. Ozone and survival in four cohorts with potentially predisposing diseases. American Journal of Respiratory and Critical Care Medicine 184(7):836-841.

Zeldow, B., and L. A. Hatfield. 2021. Confounding and regression adjustment in difference-in-differences studies. Health Services Research 56(5):932-941.

Zheng, Y., X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. 2015. Forecasting Fine-Grained Air Quality Based on Big Data. Paper read at KDD ‘15: The 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 8.

Zhou, T., M. R. Elliott, and R. J. A. Little. 2019. Penalized spline of propensity methods for treatment comparison. Journal of the American Statistical Association 114(525):1-19.

Zhu, Y., M. Schonbach, D. L. Coffman, and J. S. Williams. 2015. Variable selection for propensity score estimation via balancing covariates. Epidemiology 26(2):e14-e15.

Zidek, J. V., H. Wong, N. D. Le, and R. Burnett. 1996. Causality, measurement error and multicollinearity in epidemiology. Environmetrics 7(4):441-451.

Zigler, C. M., and F. Dominici. 2014a. Point: Clarifying policy evidence with potential-outcomes thinking—Beyond exposure-response estimation in air pollution epidemiology. American Journal of Epidemiology 180(12):1133-1140.

Zigler, C. M., and F. Dominici. 2014b. Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects. Journal of the American Statistical Association 109(505):95-107.

Zigler, C. M., F. Dominici, and Y. Wang. 2012. Estimating causal effects of air quality regulations using principal stratification for spatially correlated multivariate intermediate outcomes. Biostatistics (Oxford, England) 13(2):289-302.

Zubizarreta, J. R. 2012. Using mixed integer programming for matching in an observational study of kidney failure after surgery. Journal of the American Statistical Association 107(500):1360-1371.

Zubizarreta, J., M. Cerda, and P. R. Rosenbaum. 2013. Effect of the 2010 Chilean earthquake on posttraumatic stress: Reducing sensitivity to unmeasured bias through study design. Epidemiology 24(1):79-87.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 137
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 138
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 139
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 140
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 141
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 142
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 143
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 144
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 145
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 146
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 147
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 148
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 149
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 150
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 151
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews. Washington, DC: The National Academies Press. doi: 10.17226/26612.
×
Page 152
Next: Appendix A: Committee Member Biographies »
Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews Get This Book
×
 Advancing the Framework for Assessing Causality of Health and Welfare Effects to Inform National Ambient Air Quality Standard Reviews
Buy Paperback | $26.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

As part of its responsibilities under the Clean Air Act, the U.S. Environmental Protection Agency sets National Ambient Air Quality Standards (NAAQS) for the air pollutants carbon monoxide, lead, oxides of nitrogen, particulate matter, ozone, and sulfur dioxide. EPA uses a "weight of evidence approach" to evaluate evidence from scientific studies and describe the causal relationships between these "criteria pollutants" and any adverse impacts on human health and on public welfare - including impacts on wildlife, water, forests, agriculture, and climate. The evaluation, called an Integrated Science Assessment, is used to inform standards setting associated with the criteria pollutants.

This report, produced at the request of EPA, describes EPAs and several other frameworks for inferring causality of health or welfare effects and the characteristics of evidence useful for forming a causal determination. The report concludes that EPAs causal framework is effective, reliable, and scientifically defensible, provided that key scientific questions are identified and a range of necessary expertise is engaged. More transparency in how EPA integrates evidence could improve confidence in their determinations, and more guidance is needed in the framework on how evidence should be examined for vulnerable groups (e.g., human sub-populations) and sensitive ecosystems or species.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!