National Academies Press: OpenBook

Climate Change Science: An Analysis of Some Key Questions (2001)

Chapter: 4. Climate System Models

« Previous: 3. Human Caused Forcings
Suggested Citation:"4. Climate System Models." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.

Page 15

4 Climate System Models

Climate system models are an important tool for interpreting observations and assessing hypothetical futures. They are mathematical computer-based expressions of the thermodynamics, fluid motions, chemical reactions, and radiative transfer of Earth climate that are as comprehensive as allowed by computational feasibility and by scientific understanding of their formulation. Their purpose is to calculate the evolving state of the global atmosphere, ocean, land surface, and sea ice in response to external forcings of both natural causes (such as solar and volcanic) and human causes (such as emissions and land uses), given geography and initial material compositions. Such models have been in use for several decades. They are continually improved to increase their comprehensiveness with respect to spatial resolution, temporal duration, biogeochemical complexity, and representation of important effects of processes that cannot practically be calculated on the global scale (such as clouds and turbulent mixing). Formulating, constructing, and using such models and analyzing, assessing, and interpreting their answers make climate system models large and expensive enterprises. For this reason, they are often associated, at least in part, with national laboratories. The rapid increase over recent decades in available computational speed and power offers opportunities for more elaborate, more realistic models, but requires regular upgrading of the basic computers to avoid obsolescence.

Climate models calculate outcomes after taking into account the great number of climate variables and the complex interactions inherent in the climate system. Their purpose is the creation of a synthetic reality that can be compared with the observed reality, subject to appropriate averaging of the measurements. Thus, such models can be evaluated through comparison with observations, provided that suitable observations exist. Furthermore, model solutions can be diagnosed to assess contributing causes of particular phenomena. Because climate is uncontrollable (albeit influenceable by humans), the models are the only available experimental laboratory for climate. They also are the appropriate high-end tool for forecasting hypothetical climates in the years and centuries ahead. However, climate models are imperfect. Their simulation skill is limited by uncertainties in their formulation, the limited size of their calculations, and the difficulty of interpreting their answers that exhibit almost as much complexity as in nature.

The current norm for a climate system model is to include a full suite of physical representations for air, water, land, and ice with a geographic resolution scale of typically about 250 km. Model solutions match the primary planetary-scale circulation, seasonal variability, and temperature structures with qualitative validity but still some remaining discrepancies. They show forced responses of the global-mean temperature that corresponds roughly with its measured history over the past century, though this requires model adjustments. They achieve a stable equilibrium over millennial intervals with free exchanges of heat, water, and stress across the land and water surfaces. They also exhibit plausible analogues for the dominant modes of intrinsic variability, such as the El Niño/Southern Oscillation (ENSO), although some important discrepancies still remain. At present, climate system models specify solar luminosity, atmospheric composition, and other agents of radiative forcing. A frontier for climate models is the incorporation of more complete biogeochemical cycles (for example, for carbon dioxide). The greater the sophistication and complexity of an atmospheric model, the greater the need for detailed multiple measurements, which test whether the model continues to mimic observational reality. Applications of climate models to past climate states encompass “snapshots” during particular millennia, but they do not yet provide for continuous evolution over longer intervals (transitions between ice ages).

Suggested Citation:"4. Climate System Models." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
Page 15
Next: 5. Observed Climate Change During the Industrial Era »
Climate Change Science: An Analysis of Some Key Questions Get This Book
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!