National Academies Press: OpenBook
« Previous: 5 Recommendations
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

References

Agustí-Panareda, A., M. Diamantakis, S. Massart, F. Chevallier, J. Muñoz-Sabater, J. Barré, R. Curcoll, R. Engelen, B. Langerock, R. M. Law, Z. Loh, J. A. Morguí, M. Parrington, V. H. Peuch, M. Ramonet, C. Roehl, A. T. Vermeulen, T. Warneke, and D. Wunch. 2019. Modelling CO2 weather – why horizontal resolution matters. Atmospheric Chemistry and Physics 19(11):7347-7376. https://doi.org/10.5194/acp-19-7347-2019.

Akagi, S. K., I. R. Burling, A. Mendoza, T. J. Johnson, M. Cameron, D. W. T. Griffith, C. Paton-Walsh, D. R. Weise, J. Reardon, and R. J. Yokelson. 2014. Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system. Atmospheric Chemistry and Physics 14(1):199-215. https://doi.org/10.5194/acp-14-199-2014.

Akhshik, M., A. Bilton, J. Tjong, C. V. Singh, O. Faruk, and M. Sain. 2022. Prediction of greenhouse gas emissions reductions via machine learning algorithms: Toward an artificial intelligence-based life cycle assessment for automotive lightweighting. Sustainable Materials and Technologies 31:e00370. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00370.

Al-Shalan, A., D. Lowry, R. E. Fisher, E. G. Nisbet, G. Zazzeri, M. Al-Sarawi, and J. L. France. 2022. Methane emissions in Kuwait: Plume identification, isotopic characterisation and inventory verification. Atmospheric Environment 268:118763. https://doi.org/10.1016/j.atmosenv.2021.118763.

Alden, C. B., S. C. Coburn, R. J. Wright, E. Baumann, K. Cossel, E. Perez, E. Hoenig, K. Prasad, I. Coddington, and G. B. Rieker. 2019. Single-blind quantification of natural gas leaks from 1 km distance using frequency combs. Environmental Science & Technology 53(5):2908-2917. https://doi.org/10.1021/acs.est.8b06259.

Allen, D. 2016. Attributing atmospheric methane to anthropogenic emission sources. Accounts of Chemical Research 49(7):1344-1350. https://doi.org/10.1021/acs.accounts.6b00081.

Allen, D. T., V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, B. K. Lamb, J. Miskimins, R. F. Sawyer, and J. H. Seinfeld. 2013. Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Sciences 110(44):17768-17773. https://doi.org/10.1073/pnas.1304880110.

Allen, M. R., G. P. Peters, K. P. Shine, C. Azar, P. Balcombe, O. Boucher, M. Cain, P. Ciais, W. Collins, P. M. Forster, D. J. Frame, P. Friedlingstein, C. Fyson, T. Gasser, B. Hare, S. Jenkins, S. P. Hamburg, D. J. A. Johansson, J. Lynch, A. Macey, J. Morfeldt, A. Nauels, I. Ocko, M. Oppenheimer, S. W. Pacala, R. Pierrehumbert, J. Rogelj, M. Schaeffer, C. F. Schleussner, D. Shindell, R. B. Skeie, S. M. Smith, and K. Tanaka. 2022. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. npj Climate and Atmospheric Science 5(1):5. https://doi.org/10.1038/s41612-021-00226-2.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Allwood, J. M., V. Bosetti, N. K. Dubash, L. Gómez-Echeverri, and C. v. Stechow. 2014. Glossary. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. v. Stechow, T. Zwickel, and J. C. Minx, eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Alova, G., P. A. Trotter, and A. Money. 2021. A machine-learning approach to predicting Africa’s electricity mix based on planned power plants and their chances of success. Nature Energy 6(2):158-166. https://doi.org/10.1038/s41560-020-00755-9.

Alvarez, R. A., D. Zavala-Araiza, D. R. Lyon, D. T. Allen, Z. R. Barkley, A. R. Brandt, K. J. Davis, S. C. Herndon, D. J. Jacob, A. Karion, E. A. Kort, B. K. Lamb, T. Lauvaux, J. D. Maasakkers, A. J. Marchese, M. Omara, S. W. Pacala, J. Peischl, A. L. Robinson, P. B. Shepson, C. Sweeney, A. Townsend-Small, S. C. Wofsy, and S. P. Hamburg. 2018. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361(6398):186-188. https://doi.org/10.1126/science.aar7204.

Amini, S., T. Kuwayama, L. Gong, M. Falk, Y. Chen, Q. Mitloehner, S. Weller, F. M. Mitloehner, D. Patteson, S. A. Conley, E. Scheehle, and M. FitzGibbon. 2022. Evaluating California dairy methane emission factors using short-term ground-level and airborne measurements. Atmospheric Environment: X 14:100171. https://doi.org/10.1016/j.aeaoa.2022.100171.

Ammoura, L., I. Xueref-Remy, F. Vogel, V. Gros, A. Baudic, B. Bonsang, M. Delmotte, Y. Té, and F. Chevallier. 2016. Exploiting stagnant conditions to derive robust emission ratio estimates for CO2, CO and volatile organic compounds in Paris. Atmospheric Chemistry and Physics 16(24):15653-15664. https://doi.org/10.5194/acp-16-15653-2016.

Andres, R. J., G. Marland, I. Fung, and E. Matthews. 1996. A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990. Global Biogeochemical Cycles 10(3):419-429. https://doi.org/10.1029/96GB01523.

Andres, R. J., T. A. Boden, F. M. Bréon, P. Ciais, S. Davis, D. Erickson, J. S. Gregg, A. Jacobson, G. Marland, J. Miller, T. Oda, J. G. J. Olivier, M. R. Raupach, P. Rayner, and K. Treanton. 2012. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9(5):1845-1871. https://doi.org/10.5194/bg-9-1845-2012.

Andres, R. J., T. A. Boden, and D. Higdon. 2014. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B: Chemical and Physical Meteorology 66(1):23616. https://doi.org/10.3402/tellusb.v66.23616.

Andres, R. J., T. A. Boden, and D. M. Higdon. 2016. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmospheric Chemistry and Physics 16(23):14979-14995. https://doi.org/10.5194/acp-16-14979-2016.

Andrew, R. M. 2020. A comparison of estimates of global carbon dioxide emissions from fossil carbon sources. Earth System Science Data 12(2):1437-1465. https://doi.org/10.5194/essd-12-1437-2020.

Andrews, A. 2022. Developing greenhouse gas emissions inventories. Presented at Development of a Framework for Evaluating Greenhouse Gas Emissions Information for Decision Making: A Workshop, June 27, 2022.

Arnautu, D., and C. Dagenais. 2021. Use and effectiveness of policy briefs as a knowledge transfer tool: A scoping review. Humanities and Social Sciences Communications 8(1):211. https://doi.org/10.1057/s41599-021-00885-9.

Arnold, T., A. J. Manning, J. Kim, S. Li, H. Webster, D. Thomson, J. Mühle, R. F. Weiss, S. Park, and S. O’Doherty. 2018. Inverse modelling of CF4 and NF3 emissions in East Asia. Atmospheric Chemistry and Physics 18(18):13305-13320. https://doi.org/10.5194/acp-18-13305-2018.

Asefi-Najafabady, S., P. J. Rayner, K. R. Gurney, A. McRobert, Y. Song, K. Coltin, J. Huang, C. Elvidge, and K. Baugh. 2014. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results. Journal of Geophysical Research: Atmospheres 119(17):10213-10231. https://doi.org/10.1002/2013JD021296.

Balkovič, J., M. Madaras, R. Skalský, C. Folberth, M. Smatanová, E. Schmid, M. van der Velde, F. Kraxner, and M. Obersteiner. 2020. Verifiable soil organic carbon modelling to facilitate regional reporting of cropland carbon change: A test case in the Czech Republic. Journal of Environmental Management 274:111206. https://doi.org/10.1016/j.jenvman.2020.111206.

Bastos, A., K. Hartung, T. B. Nützel, J. E. M. S. Nabel, R. A. Houghton, and J. Pongratz. 2021. Comparison of uncertainties in land-use change fluxes from bookkeeping model parameterisation. Earth System Dynamics 12(2):745-762. https://doi.org/10.5194/esd-12-745-2021.

Basu, S., J. B. Miller, and S. Lehman. 2016. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation system simulations. Atmospheric Chemistry and Physics 16(9):5665-5683. https://doi.org/10.5194/acp-16-5665-2016.

Basu, S., D. F. Baker, F. Chevallier, P. K. Patra, J. Liu, and J. B. Miller. 2018. The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2. Atmospheric Chemistry and Physics 18(10):7189-7215. https://doi.org/10.5194/acp-18-7189-2018.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Basu, S., S. J. Lehman, J. B. Miller, A. E. Andrews, C. Sweeney, K. R. Gurney, X. Xu, J. Southon, and P. P. Tans. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proceedings of the National Academy of Sciences 117(24):13300-13307. https://doi.org/10.1073/pnas.1919032117.

Battle, M., M. L. Bender, P. P. Tans, J. W. White, J. T. Ellis, T. Conway, and R. J. Francey. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and d13C. Science 287(5462):2467-2470. https://doi.org/10.1126/science.287.5462.2467.

Belcher, O., P. Bigger, B. Neimark, and C. Kennelly. 2020. Hidden carbon costs of the “everywhere war”: Logistics, geopolitical ecology, and the carbon boot-print of the US military. Transactions of the Institute of British Geographers 45(1):65-80. https://doi.org/10.1111/tran.12319.

Ben-Sasson, E., A. Chiesa, M. Green, E. Tromer, and M. Virza. 2015. Secure sampling of public parameters for succinct zero knowledge proofs. Presented at 2015 IEEE Symposium on Security and Privacy, May 17-21.

Bergamaschi, P., U. Karstens, A. J. Manning, M. Saunois, A. Tsuruta, A. Berchet, A. T. Vermeulen, T. Arnold, G. Janssens-Maenhout, S. Hammer, I. Levin, M. Schmidt, M. Ramonet, M. Lopez, J. Lavric, T. Aalto, H. Chen, D. G. Feist, C. Gerbig, L. Haszpra, O. Hermansen, G. Manca, J. Moncrieff, F. Meinhardt, J. Necki, M. Galkowski, S. O’Doherty, N. Paramonova, H. A. Scheeren, M. Steinbacher, and E. Dlugokencky. 2018. Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics 18(2):901-920. https://doi.org/10.5194/acp-18-901-2018.

Bertoldi, P., A. Kona, S. Rivas, and J. F. Dallemand. 2018. Towards a global comprehensive and transparent framework for cities and local governments enabling an effective contribution to the Paris climate agreement. Current Opinion in Environmental Sustainability 30:67-74. https://doi.org/10.1016/j.cosust.2018.03.009.

Boden, T. A., G. Marland, and R. J. Andres. 2011. Global, Regional, and National Fossil-Fuel CO2 Emissions. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. http://doi.org/10.3334/CDIAC/00001_V2011.

Buolamwini, J., and T. Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Presented at Proceedings of the 1st Conference on Fairness, Accountability and Transparency, Proceedings of Machine Learning Research.

Bousquet, P., P. Peylin, P. Ciais, C. L. Quéré, P. Friedlingstein, and P. P. Tans. 2000. Regional Changes in Carbon Dioxide Fluxes of Land and Oceans Since 1980. Science 290(5495):1342-1346. https://doi.org/10.1126/science.290.5495.1342.

BP. 2022. BP Statistical Review of World Energy 2022. 71st edition. London: BP p.l.c. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.

Brantley, H. L., E. D. Thoma, W. C. Squier, B. B. Guven, and D. Lyon. 2014. Assessment of methane emissions from oil and gas production pads using mobile measurements. Environmental Science & Technology 48(24):14508-14515. https://doi.org/10.1021/es503070q.

Brasseur, G. P., and M. Gupta. 2010. Impact of aviation on climate: Research priorities. Bulletin of the American Meteorological Society 91(4):461-464. https://doi.org/10.1175/2009BAMS2850.1.

Brazzola, N., A. Patt, and J. Wohland. 2022. Definitions and implications of climate-neutral aviation. Nature Climate Change 12:761-767. https://doi.org/10.1038/s41558-022-01404-7.

Breidenich, C. 2011. Improving Reporting of National Communications and GHG Inventories by Non-Annex I Parties under the Climate Convention. New York: Natural Resources Defense Council. https://www.nrdc.org/sites/default/files/trackingcarbon-wp.pdf.

Brewer, P. J., R. J. C. Brown, O. A. Tarasova, B. Hall, G. C. Rhoderick, and R. I. Wielgosz. 2018. SI traceability and scales for underpinning atmospheric monitoring of greenhouse gases. Metrologia 55(5):S174-S181. https://doi.org/10.1088/1681-7575/aad830.

Bun, R., Z. Nahorski, J. Horabik-Pyzel, O. Danylo, L. See, N. Charkovska, P. Topylko, M. Halushchak, M. Lesiv, M. Valakh, and V. Kinakh. 2019. Development of a high-resolution spatial inventory of greenhouse gas emissions for Poland from stationary and mobile sources. Mitigation and Adaptation Strategies for Global Change 24(6):853-880. https://doi.org/10.1007/s11027-018-9791-2.

Bun, R. 2022. GHG emissions high-resolution spatial estimates: Uncertainty quantification. Presented at Development of a Framework for Evaluating Greenhouse Gas Emissions Information for Decision Making: A Workshop, Washington, DC, June 27–28, 2022.

Bun, R., M. Gusti, L. Kujii, O. Tokar, Y. Tsybrivskyy, and A. Bun. 2007. Spatial GHG inventory: Analysis of uncertainty sources. A case study for Ukraine. In Accounting for Climate Change: Uncertainty in Greenhouse Gas Inventories — Verification, Compliance, and Trading. D. Lieberman, M. Jonas, Z. Nahorski, and S. Nilsson, eds. Dordrecht: Springer Netherlands.

Burns, K., L. A. Hendricks, K. Saenko, T. Darrell, and A. Rohrbach. 2019. Women also snowboard: Overcoming bias in captioning models. arXiv 1803.09797.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Byrne, B., D. F. Baker, S. Basu, M. Bertolacci, K. W. Bowman, D. Carroll, A. Chatterjee, F. Chevallier, P. Ciais, N. Cressie, D. Crisp, S. Crowell, F. Deng, Z. Deng, N. M. Deutscher, M. Dubey, S. Feng, O. García, D. W. T. Griffith, B. Herkommer, L. Hu, A. R. Jacobson, R. Janardanan, S. Jeong, M. S. Johnson, D. B. A. Jones, R. Kivi, J. Liu, Z. Liu, S. Maksyutov, J. B. Miller, S. M. Miller, I. Morino, J. Notholt, T. Oda, C. W. O’Dell, Y. S. Oh, H. Ohyama, P. K. Patra, H. Peiro, C. Petri, S. Philip, D. F. Pollard, B. Poulter, M. Remaud, A. Schuh, M. K. Sha, K. Shiomi, K. Strong, C. Sweeney, Y. Té, H. Tian, V. A. Velazco, M. Vrekoussis, T. Warneke, J. R. Worden, D. Wunch, Y. Yao, J. Yun, A. Zammit-Mangion, and N. Zeng. 2022. National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the Global Stocktake. Earth System Science Data Discussions 2022:1-59. https://doi.org/10.5194/essd-2022-213.

Cambaliza, M. O. L., P. B. Shepson, D. R. Caulton, B. Stirm, D. Samarov, K. R. Gurney, J. Turnbull, K. J. Davis, A. Possolo, A. Karion, C. Sweeney, B. Moser, A. Hendricks, T. Lauvaux, K. Mays, J. Whetstone, J. Huang, I. Razlivanov, N. L. Miles, and S. J. Richardson. 2014. Assessment of uncertainties of an aircraft-based mass balance approach for quantifying urban greenhouse gas emissions. Atmosperic Chemistry and Physics 14(17):9029-9050. https://doi.org/10.5194/acp-14-9029-2014.

Cambaliza, M. O. L., P. B. Shepson, J. Bogner, D. R. Caulton, B. Stirm, C. Sweeney, S. A. Montzka, K. R. Gurney, K. Spokas, O. E. Salmon, T. N. Lavoie, A. Hendricks, K. Mays, J. Turnbull, B. R. Miller, T. Lauvaux, K. Davis, A. Karion, B. Moser, C. Miller, C. Obermeyer, J. Whetstone, K. Prasad, N. Miles, and S. Richardson. 2015. Quantification and source apportionment of the methane emission flux from the city of Indianapolis. Elementa: Science of the Anthropocene 3. https://doi.org/10.12952/journal.elementa.000037.

Cambaliza, M. O. L., J. E. Bogner, R. B. Green, P. B. Shepson, T. A. Harvey, K. A. Spokas, B. H. Stirm, and M. Corcoran. 2017. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: An Indiana landfill study. Elementa: Science of the Anthropocene 5. https://doi.org/10.1525/elementa.145.

Cannon, C., S. Greene, T. K. Blank, J. Lee, and P. Natali. 2020. The next frontier of carbon accounting: A unified approach for unlocking systemic change. Basalt, CO: Rocky Mountain Institute. https://rmi.org/insight/the-next-frontier-of-carbon-accounting/.

Carlson, D., and T. Oda. 2018. Editorial: Data publication – ESSD goals, practices and recommendations. Earth System Science Data 10(4):2275-2278. https://doi.org/10.5194/essd-10-2275-2018.

Carranza, V., B. Biggs, D. Meyer, A. Townsend-Small, R. R. Thiruvenkatachari, A. Venkatram, M. L. Fischer, and F. M. Hopkins. 2022. Isotopic signatures of methane emissions from dairy farms in California’s San Joaquin Valley. Journal of Geophysical Research: Biogeosciences 127(1):e2021JG006675. https://doi.org/10.1029/2021JG006675.

Castelvecchi, D. 2016. Can we open the black box of AI? Nature News 538:20-23. https://doi.org/10.1038/538020a.

CEOS (Committee on Earth Observation Satellites). 2018. A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space. https://ceos.org/observations/documents/CEOS_AC-VC_GHG_White_Paper_Publication_Draft2_20181111.pdf.

Chan, E., D. E. J. Worthy, D. Chan, M. Ishizawa, M. D. Moran, A. Delcloo, and F. Vogel. 2020. Eight-year estimates of methane emissions from oil and gas operations in western Canada are nearly twice those reported in inventories. Environmental Science & Technology 54(23):14899-14909. https://doi.org/10.1021/acs.est.0c04117.

Cheewaphongphan, P., S. Chatani, and N. Saigusa. 2019. Exploring gaps between bottom-up and top-down emission estimates based on uncertainties in multiple emission inventories: A case study on CH4 emissions in China. Sustainability 11(7):2054. https://doi.org/10.3390/su11072054.

Chen, F., P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong. 2015. Data mining for the Internet of Things: Literature review and challenges. International Journal of Distributed Sensor Networks 11(8):431047. https://doi.org/10.1155/2015/431047.

Chen, H. W., L. N. Zhang, F. Zhang, K. J. Davis, T. Lauvaux, S. Pal, B. Gaudet, and J. P. DiGangi. 2019. Evaluation of regional CO2 mole fractions in the ECMWF CAMS real-time atmospheric analysis and NOAA CarbonTracker Near-Real-Time reanalysis with airborne observations from ACT-America field campaigns. Journal of Geophysical Research: Atmospheres 124(14):8119-8133. https://doi.org/10.1029/2018JD029992.

Chen, J., and M. D. Brauch. 2021. Comparison Between the IPCC Reporting Framework and Country Practice. New York: Columbia Center on Sustainable Investment. https://doi.org/10.7916/d8-157j-f013.

Chen, Q., M. Modi, G. McGaughey, Y. Kimura, E. McDonald-Buller, and D. T. Allen. 2022a. Simulated methane emission detection capabilities of continuous monitoring networks in an oil and gas production region. Atmosphere 13:510. https://doi.org/10.3390/atmos13040510.

Chen, Y., E. D. Sherwin, E. S. F. Berman, B. B. Jones, M. P. Gordon, E. B. Wetherley, E. A. Kort, and A. R. Brandt. 2022b. Quantifying regional methane emissions in the New Mexico Permian Basin with a comprehensive aerial survey. Environmental Science & Technology 56(7):4317-4323. https://doi.org/10.1021/acs.est.1c06458.

Chevallier, F., B. Zheng, G. Broquet, P. Ciais, Z. Liu, S. J. Davis, Z. Deng, Y. Wang, F.-M. Bréon, and C. W. O’Dell. 2020. Local anomalies in the column-averaged dry air mole fractions of carbon dioxide across the globe during the first months of the coronavirus recession. Geophysical Research Letters 47(22):e2020GL090244. https://doi.org/10.1029/2020GL090244.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Ciais, P. 2015. Decadal changes in carbon emissions and sinks optimized using a Bayesian fusion of multiple observations. Presented at American Geophysical Union Fall Meeting, December 2015.

Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey. 1995. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269(5227):1098-1102. https://doi.org/10.1126/science.269.5227.1098.

ClimaSouth. 2014. An Introduction to National GHG Inventories Measurement, Reporting & Verification (MRV). Rabat, Morocco: ClimaSouth. https://www.climamed.eu/wp-content/uploads/files/An-Introduction-to-National-GHG-Inventories.pdf.

Climate TRACE. n.d. Climate Trace: Independent Greenhouse Gas Emissions Tracking. https://www.climatetrace.org.

Conley, S., I. Faloona, S. Mehrotra, M. Suard, D. H. Lenschow, C. Sweeney, S. Herndon, S. Schwietzke, G. Pétron, J. Pifer, E. A. Kort, and R. Schnell. 2017. Application of Gauss’s theorem to quantify localized surface emissions from airborne measurements of wind and trace gases. Atmospheric Measurement Techniques 10(9):3345-3358. https://doi.org/10.5194/amt-10-3345-2017.

Conrad, B. M., and M. R. Johnson. 2017. Field measurements of black carbon yields from gas flaring. Environmental Science & Technology 51(3):1893-1900. https://doi.org/10.1021/acs.est.6b03690.

Crippa, M., D. Guizzardi, E. Solazzo, M. Muntean, E. Schaaf, F. Monforti-Ferrario, M. Banja, J. G. J. Olivier, G. Grassi, S. Rossi, and E. Vignati. 2021. GHG Emissions of All World Countries. 2021 Report, EUR 30831 EN. Luxembourg: Publications Office of the European Union.

Crowell, S., D. Baker, A. Schuh, S. Basu, A. R. Jacobson, F. Chevallier, J. Liu, F. Deng, L. Feng, K. McKain, A. Chatterjee, J. B. Miller, B. B. Stephens, A. Eldering, D. Crisp, D. Schimel, R. Nassar, C. W. O’Dell, T. Oda, C. Sweeney, P. I. Palmer, and D. B. A. Jones. 2019. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics 19(15):9797-9831. https://doi.org/10.5194/acp-19-9797-2019.

Cui, Y. Y., J. Brioude, W. M. Angevine, J. Peischl, S. A. McKeen, S.-W. Kim, J. A. Neuman, D. K. Henze, N. Bousserez, M. L. Fischer, S. Jeong, H. A. Michelsen, R. P. Bambha, Z. Liu, G. W. Santoni, B. C. Daube, E. A. Kort, G. J. Frost, T. B. Ryerson, S. C. Wofsy, and M. Trainer. 2017. Top-down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. Journal of Geophysical Research: Atmospheres 122(6):3686-3699. https://doi.org/10.1002/2016JD026398.

Cui, Y. Y., A. Vijayan, M. Falk, Y.-K. Hsu, D. Yin, X. M. Chen, Z. Zhao, J. Avise, Y. Chen, K. Verhulst, R. Duren, V. Yadav, C. Miller, R. Weiss, R. Keeling, J. Kim, L. T. Iraci, T. Tanaka, M. S. Johnson, E. A. Kort, L. Bianco, M. L. Fischer, K. Stroud, J. Herner, and B. Croes. 2019. A multiplatform inversion estimation of statewide and regional methane emissions in California during 2014–2016. Environmental Science & Technology 53(16):9636-9645. https://doi.org/10.1021/acs.est.9b01769.

Cusworth, D. H., R. M. Duren, A. K. Thorpe, E. Tseng, D. Thompson, A. Guha, S. Newman, K. T. Foster, and C. E. Miller. 2020. Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations. Environmental Research Letters 15(5):054012. https://doi.org/10.1088/1748-9326/ab7b99.

Cusworth, D. H., R. M. Duren, A. K. Thorpe, M. L. Eastwood, R. O. Green, P. E. Dennison, C. Frankenberg, J. W. Heckler, G. P. Asner, and C. E. Miller. 2021a. Quantifying global power plant carbon dioxide emissions with imaging spectroscopy. AGU Advances 2(2):e2020AV000350. https://doi.org/10.1029/2020AV000350.

Cusworth, D. H., R. M. Duren, A. K. Thorpe, W. Olson-Duvall, J. Heckler, J. W. Chapman, M. L. Eastwood, M. C. Helmlinger, R. O. Green, G. P. Asner, P. E. Dennison, and C. E. Miller. 2021b. Intermittency of large methane emitters in the Permian Basin. Environmental Science & Technology Letters 8(7):567-573. https://doi.org/10.1021/acs.estlett.1c00173.

Damassa, T., and S. Elsayed. 2013. From the GHG Measurement Frontline: A Synthesis of Non-Annex I Country National Inventory System Practices and Experiences. Washington, DC: World Resource Institute. https://www.wri.org/research/ghg-measurement-frontline.

Davis, K. J., A. Deng, T. Lauvaux, N. L. Miles, S. J. Richardson, D. P. Sarmiento, K. R. Gurney, R. M. Hardesty, T. A. Bonin, W. A. Brewer, B. K. Lamb, P. B. Shepson, R. M. Harvey, M. O. Cambaliza, C. Sweeney, J. C. Turnbull, J. Whetstone, and A. Karion. 2017. The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements. Elementa: Science of the Anthropocene. https://doi.org/10.1525/elementa.188.

Davis, S. J., and K. Caldeira. 2010. Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences 107(12):5687-5692. https://doi.org/10.1073/pnas.0906974107.

Day, T., S. Mooldijk, S. Smit, E. Posada, F. Hans, H. Fearnehough, A. Kachi, C. Warnecke, T. Kuramochi, and N. Höhne. 2022. Corporate Climate Responsibility Monitor 2022. Cologne, Germany: NewClimate Institute. https://newclimate.org/resources/publications/corporate-climate-responsibility-monitor-2022.

De Filippi, P., M. Mannan, and W. Reijers. 2020. Blockchain as a confidence machine: The problem of trust & challenges of governance. Technology in Society 62:101284. https://doi.org/10.1016/j.techsoc.2020.101284.

Deng, A., T. Lauvaux, K. J. Davis, B. J. Gaudet, N. Miles, S. J. Richardson, K. Wu, D. P. Sarmiento, R. M. Hardesty, T. A. Bonin, W. A. Brewer, and K. R. Gurney. 2017. Toward reduced transport errors in a high resolution urban CO2 inversion system. Elementa: Science of the Anthropocene 5. https://doi.org/10.1525/elementa.133.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Deng, Z., P. Ciais, Z. A. Tzompa-Sosa, M. Saunois, C. Qiu, C. Tan, T. Sun, P. Ke, Y. Cui, K. Tanaka, X. Lin, R. L. Thompson, H. Tian, Y. Yao, Y. Huang, R. Lauerwald, A. K. Jain, X. Xu, A. Bastos, S. Sitch, P. I. Palmer, T. Lauvaux, A. d’Aspremont, C. Giron, A. Benoit, B. Poulter, J. Chang, A. M. R. Petrescu, S. J. Davis, Z. Liu, G. Grassi, C. Albergel, F. N. Tubiello, L. Perugini, W. Peters, and F. Chevallier. 2022. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data 14(4):1639-1675. https://doi.org/10.5194/essd-14-1639-2022.

Denning, A. S., I. Y. Fung, and D. Randall. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376(6537):240-243. https://doi.org/10.1038/376240a0.

Deroubaix, A., G. Brasseur, B. Gaubert, I. Labuhn, L. Menut, G. Siour, and P. Tuccella. 2021. Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Meteorological Applications 28(3):e1990. https://doi.org/10.1002/met.1990.

Dietz, T., E. Ostrom, and P. C. Stern. 2003. The struggle to govern the commons. Science 302(5652):1907-1912. https://doi.org/10.1126/science.1091015.

Dou, X., Y. Wang, P. Ciais, F. Chevallier, S. J. Davis, M. Crippa, G. Janssens-Maenhout, D. Guizzardi, E. Solazzo, F. Yan, D. Huo, B. Zheng, B. Zhu, D. Cui, P. Ke, T. Sun, H. Wang, Q. Zhang, P. Gentine, Z. Deng, and Z. Liu. 2022. Near-real-time global gridded daily CO2 emissions. The Innovation 3(1):100182. https://doi.org/10.1016/j.xinn.2021.100182.

Dreyfus, G. B., Y. Xu, D. T. Shindell, D. Zaelke, and V. Ramanathan. 2022. Mitigating climate disruption in time: A self-consistent approach for avoiding both near-term and long-term global warming. Proceedings of the National Academy of Sciences 119(22):e2123536119. https://doi.org/10.1073/pnas.2123536119.

Duren, R. M. 2022. Emerging approaches and integration of multiple data sources. Presented at Greenhouse Gas Emissions Monitoring, Inventories, and Data Integration: Understanding the Landscape. National Academies of Sciences, Engineering, and Medicine, Board on Atmospheric Sciences and Climate, Washington, DC, June 2.

Duren, R. M., A. K. Thorpe, K. T. Foster, T. Rafiq, F. M. Hopkins, V. Yadav, B. D. Bue, D. R. Thompson, S. Conley, N. K. Colombi, C. Frankenberg, I. B. McCubbin, M. L. Eastwood, M. Falk, J. D. Herner, B. E. Croes, R. O. Green, and C. E. Miller. 2019. California’s methane super-emitters. Nature 575(7781):180-184. https://doi.org/10.1038/s41586-019-1720-3.

Dvorak, M. T., K. C. Armour, D. M. W. Frierson, C. Proistosescu, M. B. Baker, and C. J. Smith. 2022. Estimating the timing of geophysical commitment to 1.5 and 2.0 °C of global warming. Nature Climate Change 12(6):547-552. https://doi.org/10.1038/s41558-022-01372-y.

Eggleton, F., and K. Winfield. 2020. Open data challenges in climate science. Data Science Journal 19(1):52. https://doi.org/10.5334/dsj-2020-052.

EIA (Energy Information Administration). 2021. Annual Energy Outlook 2021 with Projections to 2050. Washington, DC: U.S. Department of Energy. https://www.eia.gov/outlooks/archive/aeo21/pdf/AEO_Narrative_2021.pdf.

Eilperin, J., and C. Mooney. 2021. Countries’ climate pledges built on flawed data, Post investigation finds. The Washington Post, November 8. https://www.washingtonpost.com/climate-environment/interactive/2021/greenhouse-gas-emissions-pledges-data.

Enting, I. G. 2001. Atmospheric Inversions: Carbon Isotopes. Presented at WOCE/JGOFS Ocean Transport Workshop, Southampton, UK, June 25-29. https://www.nodc.noaa.gov/archive/arc0013/0001873/1.1/data/1-data/publications/WOCE/transport_wkshop.pdf#page=39.

EPA (U.S. Environmental Protection Agency). 2009. Mandatory Reporting of Greenhouse Gases. 40 CFR Parts 86, 87, 89, 90, 94, 98, 1033, 1039, 1042, 1045, 1048, 1051, 1054, 1065 [EPA–HQ–OAR–2008–0508; FRL–8963–5] RIN 2060–A079. https://www.epa.gov/sites/default/files/2015-06/documents/ghg-mrr-finalpreamble.pdf.

EPA. 2019. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017. EPA 430-R-19-001. https://www.epa.gov/sites/default/files/2019-04/documents/us-ghg-inventory-2019-main-text.pdf.

EPA. 2021. Standards of Performance for New, Reconstructed, and Modified Sources and Emissions Guidelines for Existing Sources: Oil and Natural Gas Sector Climate Review. 40 CFR Part 60 [EPA-HQ-OAR-2021-0317; FRL-8510-02-OAR] RIN 2060-AV16. https://www.epa.gov/system/files/documents/2021-11/san-8510-ong-climate-review-proposalfrn-2021-11_1.pdfw.

EPA. 2022. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2020. EPA 430-R-22-003. https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020.

European Commission. 2022. EU Taxonomy for Sustainable Activities. https://ec.europa.eu/info/business-economy-euro/banking-and-finance/sustainable-finance/eu-taxonomy-sustainable-activities_en.

Executive Office of the President. 2021. The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050. Washington, DC: U.S. Department of State and the U.S. Executive Office of the President. https://www.whitehouse.gov/wp-content/uploads/2021/10/US-Long-Term-Strategy.pdf.

Falduto, C., and S. Wartmann. 2021. Towards common GHG inventory reporting tables for Biennial Transparency Reports: Experiences with tools for generating and using reporting tables under the UNFCCC. OECD/IEA Climate Change Expert Group Papers 2021(01). https://doi.org/10.1787/38f54dbf-en.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Fernández-Martínez, M., J. Sardans, F. Chevallier, P. Ciais, M. Obersteiner, S. Vicca, J. G. Canadell, A. Bastos, P. Friedlingstein, S. Sitch, S. L. Piao, I. A. Janssens, and J. Peñuelas. 2019. Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change 9(1):73-79. https://doi.org/10.1038/s41558-018-0367-7.

Fischer, M. L., N. Parazoo, K. Brophy, X. Cui, S. Jeong, J. Liu, R. Keeling, T. E. Taylor, K. Gurney, T. Oda, and H. Graven. 2017. Simulating estimation of California fossil fuel and biosphere carbon dioxide exchanges combining in situ tower and satellite column observations. Journal of Geophysical Research: Atmospheres 122(6):3653-3671. https://doi.org/10.1002/2016JD025617.

Fischer, M. L., E. D. Lebel, and R. B. Jackson. 2020. Quantifying Methane from California’s Plugged and Abandoned Oil and Gas Wells. Sacramento, CA: California Energy Commission. https://www.energy.ca.gov/sites/default/files/2021-05/CEC-500-2020-052.pdf.

Fitzmaurice, H. L., A. J. Turner, J. Kim, K. Chan, E. R. Delaria, C. Newman, P. Wooldridge, and R. C. Cohen. 2022. Assessing vehicle fuel efficiency using a dense network of CO2 observations. Atmospheric Chemistry and Physics 22(6):3891-3900. https://doi.org/10.5194/acp-22-3891-2022.

Flerlage, H., G. J. M. Velders, and J. de Boer. 2021. A review of bottom-up and top-down emission estimates of hydrofluorocarbons (HFCs) in different parts of the world. Chemosphere 283:131208. https://doi.org/10.1016/j.chemosphere.2021.131208.

Fong, W. K., M. Sotos, M. Doust, S. Schultz, A. Marques, and C. Deng-Beck. 2014. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories. Washington, DC: World Resources Institute. https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities.

Forster, P. M., H. I. Forster, M. J. Evans, M. J. Gidden, C. D. Jones, C. A. Keller, R. D. Lamboll, C. L. Quéré, J. Rogelj, D. Rosen, C.-F. Schleussner, T. B. Richardson, C. J. Smith, and S. T. Turnock. 2020. Current and future global climate impacts resulting from COVID-19. Nature Climate Change 10(10):913-919. https://doi.org/10.1038/s41558-020-0883-0.

Fournier, J., V. Gray, and J. Grippe. 2022. JLINX White Paper.

Frankenberg, C., S. S. Kulawik, S. C. Wofsy, F. Chevallier, B. Daube, E. A. Kort, C. O’Dell, E. T. Olsen, and G. Osterman. 2016. Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmospheric Chemistry and Physics 16(12):7867-7878. https://doi.org/10.5194/acp-16-7867-2016.

Frey, M., M. K. Sha, F. Hase, M. Kiel, T. Blumenstock, R. Harig, G. Surawicz, N. M. Deutscher, K. Shiomi, J. E. Franklin, H. Bösch, J. Chen, M. Grutter, H. Ohyama, Y. Sun, A. Butz, G. Mengistu Tsidu, D. Ene, D. Wunch, Z. Cao, O. Garcia, M. Ramonet, F. Vogel, and J. Orphal. 2019. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmospheric Measurement Techniques 12(3):1513-1530. https://doi.org/10.5194/amt-12-1513-2019.

Frey, M. M., F. Hase, T. Blumenstock, D. Dubravica, J. Groß, F. Göttsche, M. Handjaba, P. Amadhila, R. Mushi, I. Morino, K. Shiomi, M. K. Sha, M. de Mazière, and D. F. Pollard. 2021. Long-term column-averaged greenhouse gas observations using a COCCON spectrometer at the high-surface-albedo site in Gobabeb, Namibia. Atmospheric Measurement Techniques 14(9):5887-5911. https://doi.org/10.5194/amt-14-5887-2021.

Friedlingstein, P., M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. Klein Goldewijk, J. I. Korsbakken, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle. 2019. Global carbon budget 2019. Earth System Science Data 11(4):1783-1838. https://doi.org/10.5194/essd-11-1783-2019.

Friedlingstein, P., M. O’Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, K. O’Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, and S. Zaehle. 2020. Global carbon budget 2020. Earth System Science Data 12(4):3269-3340. https://doi.org/10.5194/essd-12-3269-2020.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Friedlingstein, P., M. W. Jones, M. O’Sullivan, R. M. Andrew, D. C. E. Bakker, J. Hauck, C. Le Quéré, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, J. G. Canadell, P. Ciais, R. B. Jackson, S. R. Alin, P. Anthoni, N. R. Bates, M. Becker, N. Bellouin, L. Bopp, T. T. T. Chau, F. Chevallier, L. P. Chini, M. Cronin, K. I. Currie, B. Decharme, L. M. Djeutchouang, X. Dou, W. Evans, R. A. Feely, L. Feng, T. Gasser, D. Gilfillan, T. Gkritzalis, G. Grassi, L. Gregor, N. Gruber, Ö. Gürses, I. Harris, R. A. Houghton, G. C. Hurtt, Y. Iida, T. Ilyina, I. T. Luijkx, A. Jain, S. D. Jones, E. Kato, D. Kennedy, K. Klein Goldewijk, J. Knauer, J. I. Korsbakken, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, S. Lienert, J. Liu, G. Marland, P. C. McGuire, J. R. Melton, D. R. Munro, J. E. M. S. Nabel, S. I. Nakaoka, Y. Niwa, T. Ono, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, T. M. Rosan, J. Schwinger, C. Schwingshackl, R. Séférian, A. J. Sutton, C. Sweeney, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, F. Tubiello, G. R. van der Werf, N. Vuichard, C. Wada, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, C. Yue, X. Yue, S. Zaehle, and J. Zeng. 2022. Global carbon budget 2021. Earth System Science Data 14(4):1917-2005. https://doi.org/10.5194/essd-14-1917-2022.

Ganesan, A. L., A. J. Manning, A. Grant, D. Young, D. E. Oram, W. T. Sturges, J. B. Moncrieff, and S. O’Doherty. 2015. Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network. Atmospheric Chemistry and Physics 15(11):6393-6406. https://doi.org/10.5194/acp-15-6393-2015.

Gasser, T., P. Ciais, O. Boucher, Y. Quilcaille, M. Tortora, L. Bopp, and D. Hauglustaine. 2017. The compact Earth system model OSCAR v2.2: Description and first results. Geoscientific Model Development 10(1):271-319. https://doi.org/10.5194/gmd-10-271-2017.

Gasser, T., L. Crepin, Y. Quilcaille, R. A. Houghton, P. Ciais, and M. Obersteiner. 2020. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 17(15):4075-4101. https://doi.org/10.5194/bg-17-4075-2020.

Gately, C. K., and L. R. Hutyra. 2017. Large uncertainties in urban-scale carbon emissions. Journal of Geophysical Research: Atmospheres 122(20):11242-11260. https://doi.org/10.1002/2017JD027359.

Gately, C. K., L. R. Hutyra, S. Peterson, and I. Sue Wing. 2017. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environmental Pollution 229:496-504. https://doi.org/10.1016/j.envpol.2017.05.091.

Gatti, L. V., L. S. Basso, J. B. Miller, M. Gloor, L. Gatti Domingues, H. L. G. Cassol, G. Tejada, L. E. O. C. Aragão, C. Nobre, W. Peters, L. Marani, E. Arai, A. H. Sanches, S. M. Corrêa, L. Anderson, C. Von Randow, C. S. C. Correia, S. P. Crispim, and R. A. L. Neves. 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature 595(7867):388-393. https://doi.org/10.1038/s41586-021-03629-6.

GCoM (Global Convenant of Mayors). 2018. Implementing Climate Ambition: Global Covenant of Mayors 2018 Global Aggregation Report. https://www.globalcovenantofmayors.org/press/implementing-climate-ambition-global-covenant-of-mayors-2018-global-aggregation-report/. https://www.globalcovenantofmayors.org/press/implementing-climate-ambition-global-covenant-of-mayors-2018-global-aggregation-report/.

Gensheimer, J., J. Chen, A. J. Turner, A. Shekhar, A. Wenzel, and F. N. Keutsch. 2021. What are the different measures of mobility telling us about surface transportation CO2 emissions during the COVID-19 pandemic? Journal of Geophysical Research: Atmospheres 126(11):e2021JD034664. https://doi.org/10.1029/2021JD034664.

Gilfillan, D., and G. Marland. 2021. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth System Science Data 13(4):1667-1680. https://doi.org/10.5194/essd-13-1667-2021.

Gioli, B., G. Gualtieri, C. Busillo, F. Calastrini, A. Zaldei, and P. Toscano. 2015. Improving high resolution emission inventories with local proxies and urban eddy covariance flux measurements. Atmospheric Environment 115:246-256. https://doi.org/10.1016/j.atmosenv.2015.05.068.

Gisi, M., F. Hase, S. Dohe, T. Blumenstock, A. Simon, and A. Keens. 2012. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy. Atmospheric Measurement Techniques 5(11):2969-2980. https://doi.org/10.5194/amt-5-2969-2012.

Giuliani, G., P. Lacroix, Y. Guigoz, R. Roncella, L. Bigagli, M. Santoro, P. Mazzetti, S. Nativi, N. Ray, and A. Lehmann. 2017. Bringing GEOSS services into practice: A capacity building resource on spatial data infrastructures (SDI). Transactions in GIS 21(4):811-824. https://doi.org/10.1111/tgis.12209.

Giuliani, G., J. Masó, P. Mazzetti, S. Nativi, and A. Zabala. 2019. Paving the way to increased interoperability of Earth observations data cubes. Data 4(3):113. https://doi.org/10.3390/data4030113.

Gommet, C., R. Lauerwald, P. Ciais, B. Guenet, H. Zhang, and P. Regnier. 2022. Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network. Earth System Dynamics 13(1):393-418. https://doi.org/10.5194/esd-13-393-2022.

Goodwin, J., and K. Kizzier. 2018. Elaborating the Paris Agreement: National Greenhouse Gas Inventories. Arlington, VA: Center for Climate and Energy Solutions. https://www.c2es.org/wp-content/uploads/2018/08/national-greenhouse-gas-inventories.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Gordon, D. 2022. Development of a Framework for Evaluating Greenhouse Gas Emissions Information for Decision Making. Presented at Workshop on Development of a Framework for Evaluating Global Greenhouse Gas Emissions Information for Decision Making. National Academies of Sciences, Engineering, and Medicine, Washington, DC, June 27.

Grange, S. K., J. D. Lee, W. S. Drysdale, A. C. Lewis, C. Hueglin, L. Emmenegger, and D. C. Carslaw. 2021. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics 21(5):4169-4185. https://doi.org/10.5194/acp-21-4169-2021.

Grassi, G., E. Stehfest, J. Rogelj, D. van Vuuren, A. Cescatti, J. House, G.-J. Nabuurs, S. Rossi, R. Alkama, R. A. Viñas, K. Calvin, G. Ceccherini, S. Federici, S. Fujimori, M. Gusti, T. Hasegawa, P. Havlik, F. Humpenöder, A. Korosuo, L. Perugini, F. N. Tubiello, and A. Popp. 2021. Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nature Climate Change 11(5):425-434. https://doi.org/10.1038/s41558-021-01033-6.

Graven, H., M. L. Fischer, T. Lueker, S. Jeong, T. P. Guilderson, R. F. Keeling, R. Bambha, K. Brophy, W. Callahan, X. Cui, C. Frankenberg, K. R. Gurney, B. W. LaFranchi, S. J. Lehman, H. Michelsen, J. B. Miller, S. Newman, W. Paplawsky, N. C. Parazoo, C. Sloop, and S. J. Walker. 2018. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models. Environmental Research Letters 13(6):065007. https://doi.org/10.1088/1748-9326/aabd43.

Greally, B. R., A. J. Manning, S. Reimann, A. McCulloch, J. Huang, B. L. Dunse, P. G. Simmonds, R. G. Prinn, P. J. Fraser, D. M. Cunnold, S. O’Doherty, L. W. Porter, K. Stemmler, M. K. Vollmer, C. R. Lunder, N. Schmidbauer, O. Hermansen, J. Arduini, P. K. Salameh, P. B. Krummel, R. H. J. Wang, D. Folini, R. F. Weiss, M. Maione, G. Nickless, F. Stordal, and R. G. Derwent. 2007. Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates. Journal of Geophysical Research: Atmospheres 112(D6). https://doi.org/10.1029/2006JD007527.

Griffith, D. W. T., D. Pöhler, S. Schmitt, S. Hammer, S. N. Vardag, and U. Platt. 2018. Long open-path measurements of greenhouse gases in air using near-infrared Fourier transform spectroscopy. Atmospheric Measurement Techniques 11(3):1549-1563. https://doi.org/10.5194/amt-11-1549-2018.

Guan, D., Z. Liu, Y. Geng, S. Lindner, and K. Hubacek. 2012. The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change 2(9):672-675. https://doi.org/10.1038/nclimate1560.

Gupta, A., and H. van Asselt. 2019. Transparency in multilateral climate politics: Furthering (or distracting from) accountability? Regulation & Governance 13(1):18-34. https://doi.org/10.1111/rego.12159.

Gurney, K., and P. Shepson. 2021. The power and promise of improved climate data infrastructure. Proceedings of the National Academy of Sciences 118(35):e2114115118. https://doi.org/10.1073/pnas.2114115118.

Gurney, K. R., R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415(6872):626-630. https://doi.org/10.1038/415626a.

Gurney, K. R., D. L. Mendoza, Y. Zhou, M. L. Fischer, C. C. Miller, S. Geethakumar, and S. de la Rue du Can. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science & Technology 43(14):5535-5541. https://doi.org/10.1021/es900806c.

Gurney, K. R., I. Razlivanov, Y. Song, Y. Zhou, B. Benes, and M. Abdul-Massih. 2012. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city. Environmental Science & Technology 46(21):12194-12202. https://doi.org/10.1021/es3011282.

Gurney, K. R., P. Romero-Lankao, K. C. Seto, L. R. Hutyra, R. Duren, C. Kennedy, N. B. Grimm, J. R. Ehleringer, P. Marcotullio, S. Hughes, S. Pincetl, M. V. Chester, D. M. Runfola, J. J. Feddema, and J. Sperling. 2015. Climate change: Track urban emissions on a human scale. Nature 525(7568):179-181. https://doi.org/10.1038/525179a.

Gurney, K. R., J. Huang, and K. Coltin. 2016. Bias present in US federal agency power plant CO2 emissions data and implications for the US clean power plan. Environmental Research Letters 11(6):064005. https://doi.org/10.1088/1748-9326/11/6/064005.

Gurney, K. R., R. Patarasuk, J. Liang, Y. Song, D. O’Keeffe, P. Rao, J. R. Whetstone, R. M. Duren, A. Eldering, and C. Miller. 2019. The Hestia fossil fuel CO2 emissions data product for the Los Angeles megacity (Hestia-LA). Earth System Science Data 11(3):1309-1335. https://doi.org/10.5194/essd-11-1309-2019.

Gurney, K. R., Y. Song, J. Liang, and G. Roest. 2020a. Toward accurate, policy-relevant fossil fuel CO2 emission landscapes. Environmental Science & Technology 54(16):9896-9907. https://doi.org/10.1021/acs.est.0c01175.

Gurney, K. R., J. Liang, R. Patarasuk, Y. Song, J. Huang, and G. Roest. 2020b. The Vulcan version 3.0 high-resolution fossil fuel CO2 emissions for the United States. Journal of Geophysical Research: Atmospheres 125(19):e2020JD032974. https://doi.org/10.1029/2020JD032974.

Gurney, K. R., J. Liang, G. Roest, Y. Song, K. Mueller, and T. Lauvaux. 2021. Under-reporting of greenhouse gas emissions in U.S. cities. Nature Communications 12(1):553. https://doi.org/10.1038/s41467-020-20871-0.

Gurney, K. R., Ş. Kılkış, K. C. Seto, S. Lwasa, D. Moran, K. Riahi, M. Keller, P. Rayner, and M. Luqman. 2022. Greenhouse gas emissions from global cities under SSP/RCP scenarios, 1990 to 2100. Global Environmental Change 73:102478. https://doi.org/10.1016/j.gloenvcha.2022.102478.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Gütschow, J., L. Jeffery, R. Gieseke, and A. Günther. 2019. The PRIMAP-hist National Historical Emissions Time Series (1850–2017). V. 2.1. Potsdam: GFZ Data Services. https://doi.org/10.5880/PIK.2019.018.

Hakkarainen, J., M. E. Szeląg, I. Ialongo, C. Retscher, T. Oda, and D. Crisp. 2021. Analyzing nitrogen oxides to carbon dioxide emission ratios from space: A case study of Matimba Power Station in South Africa. Atmospheric Environment: X 10:100110. https://doi.org/10.1016/j.aeaoa.2021.100110.

Hale, T. 2020. Transnational actors and transnational governance in global environmental politics. Annual Review of Political Science 23(1):203-220. https://doi.org/10.1146/annurev-polisci-050718-032644.

Hamrani, A., A. Akbarzadeh, and C. A. Madramootoo. 2020. Machine learning for predicting greenhouse gas emissions from agricultural soils. Science of the Total Environment 741:140338. https://doi.org/10.1016/j.scitotenv.2020.140338.

Han, P., N. Zeng, T. Oda, X. Lin, M. Crippa, D. Guan, G. Janssens-Maenhout, X. Ma, Z. Liu, Y. Shan, S. Tao, H. Wang, R. Wang, L. Wu, X. Yun, Q. Zhang, F. Zhao, and B. Zheng. 2020. Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories. Atmospheric Chemistry and Physics 20(19):11371-11385. https://doi.org/10.5194/acp-20-11371-2020.

Han, Y., A. Gopal, L. Ouyang, and A. Key. 2021. Estimation of corporate greenhouse gas emissions via machine learning. arXiv preprint arXiv:2109.04318. https://doi.org/10.48550/arXiv.2109.04318.

Hansis, E., S. J. Davis, and J. Pongratz. 2015. Relevance of methodological choices for accounting of land use change carbon fluxes. Global Biogeochemical Cycles 29(8):1230-1246. https://doi.org/10.1002/2014GB004997.

Harmsen, J. H. M., D. P. van Vuuren, D. R. Nayak, A. F. Hof, L. Höglund-Isaksson, P. L. Lucas, J. B. Nielsen, P. Smith, and E. Stehfest. 2019. Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science & Policy 99:136-149. https://doi.org/10.1016/j.envsci.2019.05.013.

Hazan, L., J. Tarniewicz, M. Ramonet, O. Laurent, and A. Abbaris. 2016. Automatic processing of atmospheric CO2 and CH4 mole fractions at the ICOS Atmosphere Thematic Centre. Atmospheric Measurement Techniques 9(9):4719-4736. https://doi.org/10.5194/amt-9-4719-2016.

He, L., Z.-C. Zeng, T. J. Pongetti, C. Wong, J. Liang, K. R. Gurney, S. Newman, V. Yadav, K. Verhulst, C. E. Miller, R. Duren, C. Frankenberg, P. O. Wennberg, R.-L. Shia, Y. L. Yung, and S. P. Sander. 2019. Atmospheric methane emissions correlate with natural gas consumption from residential and commercial sectors in Los Angeles. Geophysical Research Letters 46(14):8563-8571. https://doi.org/https://doi.org/10.1029/2019GL083400.

Heerah, S., I. Frausto-Vicencio, S. Jeong, A. R. Marklein, Y. Ding, A. G. Meyer, H. A. Parker, M. L. Fischer, J. E. Franklin, F. M. Hopkins, and M. Dubey. 2021. Dairy methane emissions in California’s San Joaquin Valley inferred with ground-based remote sensing observations in the summer and winter. Journal of Geophysical Research: Atmospheres 126(24):e2021JD034785. https://doi.org/https://doi.org/10.1029/2021JD034785.

Heimburger, A. M. F., R. M. Harvey, P. B. Shepson, B. H. Stirm, C. Gore, J. Turnbull, M. O. L. Cambaliza, O. E. Salmon, A.-E. M. Kerlo, T. N. Lavoie, K. J. Davis, T. Lauvaux, A. Karion, C. Sweeney, W. A. Brewer, R. M. Hardesty, and K. R. Gurney. 2017. Assessing the optimized precision of the aircraft mass balance method for measurement of urban greenhouse gas emission rates through averaging. Elementa: Science of the Anthropocene 5. https://doi.org/10.1525/elementa.134.

Helfter, C., A. H. Tremper, C. H. Halios, S. Kotthaus, A. Bjorkegren, C. S. B. Grimmond, J. F. Barlow, and E. Nemitz. 2016. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmospheric Chemistry and Physics 16(16):10543-10557. https://doi.org/10.5194/acp-16-10543-2016.

Henne, S., D. Brunner, B. Oney, M. Leuenberger, W. Eugster, I. Bamberger, F. Meinhardt, M. Steinbacher, and L. Emmenegger. 2016. Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmospheric Chemistry and Physics 16(6):3683-3710. https://doi.org/10.5194/acp-16-3683-2016.

Hennig, R. J., M. Ge, J. Friedrich, K. Lebling, G. Carlock, A. Arcipowska, E. Mangan, H. Biru, A. Tankou, and M. Chaudhury. 2017. The Data Platform for Climate Research and Action: Introducing Climate Watch. Presented at American Geophysical Union Fall Meeting, December 1.

Hertwich, E. G., and G. P. Peters. 2009. Carbon footprint of nations: A global, trade-linked analysis. Environmental Science & Technology 43(16):6414-6420. https://doi.org/10.1021/es803496a.

Hisano, M., E. B. Searle, and H. Y. H. Chen. 2018. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews 93(1):439-456. https://doi.org/10.1111/brv.12351.

Hmiel, B., V. V. Petrenko, M. N. Dyonisius, C. Buizert, A. M. Smith, P. F. Place, C. Harth, R. Beaudette, Q. Hua, B. Yang, I. Vimont, S. E. Michel, J. P. Severinghaus, D. Etheridge, T. Bromley, J. Schmitt, X. Faïn, R. F. Weiss, and E. Dlugokencky. 2020. Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature 578(7795):409-412. https://doi.org/10.1038/s41586-020-1991-8.

Hoesly, R. M., and S. J. Smith. 2018. Informing energy consumption uncertainty: An analysis of energy data revisions. Environmental Research Letters 13(12):124023. https://doi.org/10.1088/1748-9326/aaebc3.

Höglund-Isaksson, L., A. Gómez-Sanabria, Z. Klimont, P. Rafaj, and W. Schöpp. 2020. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environmental Research Communications 2(2):025004. https://doi.org/10.1088/2515-7620/ab7457.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Houghton, R. A., and A. A. Nassikas. 2017. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles 31(3):456-472. https://doi.org/10.1002/2016GB005546.

Howlett, M. 2009. Policy analytical capacity and evidence-based policy-making: Lessons from Canada. Canadian Public Administration 52(2):153-175. https://doi.org/10.1111/j.1754-7121.2009.00070_1.x.

Hsu, A., Y. Cheng, K. Xu, A. Weinfurter, C. Yick, M. Ivanenko, S. Nair, T. Hale, B. Guy, and C. Rosengarten. 2015. Assessing the Wider World of Non-State and Sub-National Climate Action. Yale School of Forestry and Environmental Studies. https://datadrivenlab.org/wp-content/uploads/2020/01/Assessing-the-Wider-World-of-Non-state-and-Sub-national-Climate-Action-Dec10.pdf.

Hsu, A., A. Weinfurter, A. Feierman, Y. Xie, Z. Y. Yeo, K. Lütkehermöller, T. Kuramochi, S. Lui, N. Höhne, and M. Roelfsema. 2018. Global Climate Action of Regions, States and Businesses. New Haven, CT: Data Driven Yale. https://datadrivenlab.org/wp-content/uploads/2018/08/YALE-NCI-PBL_Global_climate_action.pdf.

Hsu, A., W. Khoo, N. Goyal, and M. Wainstein. 2020. Next-generation digital ecosystem for climate data mining and knowledge discovery: A review of digital data collection technologies. Frontiers in Big Data 3. https://doi.org/10.3389/fdata.2020.00029.

Hsu, A., X. Wang, J. Tan, W. Toh, and N. Goyal. 2022. Predicting European cities’ climate mitigation performance using machine learning. https://www.researchsquare.com/article/rs-1450940/v1.

Hsu, Y.-K., T. VanCuren, S. Park, C. Jakober, J. Herner, M. FitzGibbon, D. R. Blake, and D. D. Parrish. 2010. Methane emissions inventory verification in southern California. Atmospheric Environment 44(1):1-7. https://doi.org/10.1016/j.atmosenv.2009.10.002.

Humpage, N., H. Boesch, W. Okello, F. Dietrich, J. Chen, M. Lunt, L. Feng, and P. Palmer. 2020. Greenhouse gas column observations from a portable spectrometer in tropical Africa. Presented at 16th International Workshop on Greenhouse Gas Measurements from Space, June 2-5. http://doi.org/10.13140/RG.2.2.14528.97280.

Huntingford, C., E. S. Jeffers, M. B. Bonsall, H. M. Christensen, T. Lees, and H. Yang. 2019. Machine learning and artificial intelligence to aid climate change research and preparedness. Environmental Research Letters 14(12):124007. https://doi.org/10.1088/1748-9326/ab4e55.

Hurtt, G. C., A. Andrews, K. Bowman, M. E. Brown, A. Chatterjee, V. Escobar, L. Fatoyinbo, P. Griffith, M. Guy, S. P. Healey, D. J. Jacob, R. Kennedy, S. Lohrenz, M. E. McGroddy, V. Morales, T. Nehrkorn, L. Ott, S. Saatchi, E. Sepulveda Carlo, S. P. Serbin, and H. Tian. 2022. The NASA Carbon Monitoring System Phase 2 synthesis: Scope, findings, gaps and recommended next steps. Environmental Research Letters 17(6):063010. https://doi.org/10.1088/1748-9326/ac7407.

Hutchins, M. G., J. D. Colby, G. Marland, and E. Marland. 2017. A comparison of five high-resolution spatially-explicit, fossil-fuel, carbon dioxide emission inventories for the United States. Mitigation and Adaptation Strategies for Global Change 22(6):947-972. https://doi.org/10.1007/s11027-016-9709-9.

Hutyra, L. R., R. Duren, K. R. Gurney, N. Grimm, E. A. Kort, E. Larson, and G. Shrestha. 2014. Urbanization and the carbon cycle: Current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2(10):473-495. https://doi.org/https://doi.org/10.1002/2014EF000255.

Hyperledger. 2021. Decentralized ID and Access Management (DIAM) for IoT Networks. Hyperledger Telecom Special Interest Group. https://www.hyperledger.org/wp-content/uploads/2021/02/HL_LFEdge_WhitePaper_021121_3.pdf.

Iacovidou, E., J. Millward-Hopkins, J. Busch, P. Purnell, C. A. Velis, J. N. Hahladakis, O. Zwirner, and A. Brown. 2017. A pathway to circular economy: Developing a conceptual framework for complex value assessment of resources recovered from waste. Journal of Cleaner Production 168:1279-1288. https://doi.org/10.1016/j.jclepro.2017.09.002.

Ibrahim, N., L. Sugar, D. Hoornweg, and C. Kennedy. 2012. Greenhouse gas emissions from cities: Comparison of international inventory frameworks. Local Environment 17(2):223-241. https://doi.org/10.1080/13549839.2012.660909.

Idso, C. D., S. B. Idso, and R. C. Balling. 2001. An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmospheric Environment 35(6):995-1000. https://doi.org/https://doi.org/10.1016/S1352-2310(00)00412-X.

IEA (International Energy Agency). 2021a. Global Energy Review: CO2 Emissions in 2021. https://www.iea.org/data-and-statistics/data-product/global-energy-review-co2-emissions-in-2021.

IEA. 2021b. Emissions Factors 2021. https://www.iea.org/data-and-statistics/data-product/emissions-factors-2021.

IEA. 2021. Key World Energy Statistics 2021c. https://iea.blob.core.windows.net/assets/52f66a88-0b63-4ad2-94a5-29d36e864b82/KeyWorldEnergyStatistics2021.pdf.

Imasu, R., and Y. Tanabe. 2018. Diurnal and seasonal variations of carbon dioxide (CO2) concentration in urban, suburban, and rural areas around Tokyo. Atmosphere 9(10):367.

Ionov, D. V., M. V. Makarova, F. Hase, S. C. Foka, V. S. Kostsov, C. Alberti, T. Blumenstock, T. Warneke, and Y. A. Virolainen. 2021. The CO2 integral emission by the megacity of St. Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling. Atmospheric Chemistry and Physics 21(14):10939-10963. https://doi.org/10.5194/acp-21-10939-2021.

IPCC (Intergovernmental Panel on Climate Change). 2000. Land Use, Land Use Change, and Forestry. R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken, eds. Cambridge, UK: Cambridge University Press. https://www.ipcc.ch/report/land-use-land-use-change-and-forestry.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. S. Eggelston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, eds. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

IPCC. 2019a. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. E. C. Buendia, K. Tanabe, A. Kranjc, B. Jamsranjav, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau and S. Federici, eds. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html.

IPCC. 2019b. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H. -O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley, eds. Geneva, Switzerland: IPCC. https://www.ipcc.ch/srccl/.

IPCC. 2021. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M., Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, eds. Cambridge, UK and New York: Cambridge University Press.

IPCC. 2022a. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H.-O. Pörtner, D.C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama, eds. Cambridge, UK and New York, NY, USA: Cambridge University Press. http://doi.org/10.1017/9781009325844.

IPCC. 2022b. Summary for policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. P. R. Shukla, J. Skea, R. Slade, A. A. Khourdajie, R. v. Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, and J. Malley, eds. Cambridge, UK and New York, NY, USA: Cambridge University Press. http://doi.org/10.1017/9781009157926.001.

IPCC. 2022c. Urban systems and other settlements. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. P. R. Shukla, J. Skea, R. Slade, A. A. Khourdajie, R. v. Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, and J. Malley, eds. Cambridge, UK and New York, NY, USA: Cambridge University Press.

ISO (International Organization for Standardization). 2018. ISO 14064-1:2018(en). Greenhouse Gases—Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals. https://www.iso.org/obp/ui#iso:std:iso:14064:-1:ed-2:v1:en.

Ivanova, D., G. Vita, K. Steen-Olsen, K. Stadler, P. C. Melo, R. Wood, and E. G. Hertwich. 2017. Mapping the carbon footprint of EU regions. Environmental Research Letters 12(5):054013. https://doi.org/10.1088/1748-9326/aa6da9.

Jackson, R. B., P. Friedlingstein, C. Le Quéré, S. Abernethy, R. M. Andrew, J. G. Canadell, P. Ciais, S. J. Davis, Z. Deng, Z. Liu, J. I. Korsbakken, and G. P. Peters. 2022. Global fossil carbon emissions rebound near pre-COVID-19 levels. Environmental Research Letters 17(3):031001. https://doi.org/10.1088/1748-9326/ac55b6.

Jacob, D. J., D. J. Varon, D. H. Cusworth, P. E. Dennison, C. Frankenberg, R. Gautam, L. Guanter, J. Kelley, J. McKeever, L. E. Ott, B. Poulter, Z. Qu, A. K. Thorpe, J. R. Worden, and R. M. Duren. 2022. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics 22(14):9617-9646. https://doi.org/10.5194/acp-22-9617-2022.

Janssens-Maenhout, G., B. Pinty, M. Dowell, H. Zunker, E. Andersson, G. Balsamo, J. L. Bézy, T. Brunhes, H. Bösch, B. Bojkov, D. Brunner, M. Buchwitz, D. Crisp, P. Ciais, P. Counet, D. Dee, H. Denier van der Gon, H. Dolman, M. R. Drinkwater, O. Dubovik, R. Engelen, T. Fehr, V. Fernandez, M. Heimann, K. Holmlund, S. Houweling, R. Husband, O. Juvyns, A. Kentarchos, J. Landgraf, R. Lang, A. Löscher, J. Marshall, Y. Meijer, M. Nakajima, P. I. Palmer, P. Peylin, P. Rayner, M. Scholze, B. Sierk, J. Tamminen, and P. Veefkind. 2020. Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity. Bulletin of the American Meteorological Society 101(8):E1439-E1451. https://doi.org/10.1175/BAMS-D-19-0017.1.

Järvi, L., A. Nordbo, H. Junninen, A. Riikonen, J. Moilanen, E. Nikinmaa, and T. Vesala. 2012. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006–2010. Atmospheric Chemistry and Physics 12(18):8475-8489. https://doi.org/10.5194/acp-12-8475-2012.

Jervis, D., J. McKeever, B. O. A. Durak, J. J. Sloan, D. Gains, D. J. Varon, A. Ramier, M. Strupler, and E. Tarrant. 2021. The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques 14(3):2127-2140. https://doi.org/10.5194/amt-14-2127-2021.

Jones, C. M., and D. M. Kammen. 2015. A Consumption-Based Greenhouse Gas Inventory of San Francisco Bay Area Neighborhoods, Cities and Counties: Prioritizing Climate Action for Different Locations. https://escholarship.org/uc/item/2sn7m83z.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Jones, M. W., R. M. Andrew, G. P. Peters, G. Janssens-Maenhout, A. J. De-Gol, P. Ciais, P. K. Patra, F. Chevallier, and C. Le Quéré. 2021. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Scientific Data 8(1):2. https://doi.org/10.1038/s41597-020-00779-6.

Jongaramrungruang, S., C. Frankenberg, G. Matheou, A. K. Thorpe, D. R. Thompson, L. Kuai, and R. M. Duren. 2019. Towards accurate methane point-source quantification from high-resolution 2-D plume imagery. Atmospheric Measurement Techniques 12(12):6667-6681. https://doi.org/10.5194/amt-12-6667-2019.

Kaack, L. H., P. L. Donti, E. Strubell, G. Kamiya, F. Creutzig, and D. Rolnick. 2022. Aligning artificial intelligence with climate change mitigation. Nature Climate Change 12(6):518-527. https://doi.org/10.1038/s41558-022-01377-7.

Kaminski, T., M. Scholze, P. Rayner, M. Voßbeck, M. Buchwitz, M. Reuter, W. Knorr, H. Chen, A. Agustí-Panareda, A. Löscher, and Y. Meijer. 2022. Assimilation of atmospheric CO2 observations from space can support national CO2 emission inventories. Environmental Research Letters 17(1):014015. https://doi.org/10.1088/1748-9326/ac3cea.

Kanemoto, K., D. Moran, and E. G. Hertwich. 2016. Mapping the carbon footprint of nations. Environmental Science & Technology 50(19):10512-10517. https://doi.org/10.1021/acs.est.6b03227.

Karion, A., W. Callahan, M. Stock, S. Prinzivalli, K. R. Verhulst, J. Kim, P. K. Salameh, I. Lopez-Coto, and J. Whetstone. 2020. Greenhouse gas observations from the Northeast Corridor tower network. Earth System Science Data 12(1):699-717. https://doi.org/10.5194/essd-12-699-2020.

Kawanishi, M., and R. Fujikura. 2018. Evaluation of enabling factors for sustainable national greenhouse gas inventory in developing countries. International Journal of Environmental Science and Development 9(10):290-297. https://doi.org/10.18178/ijesd.2018.9.10.1116.

Keeling, C. D. 1973. Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25(2):174-198. https://doi.org/10.1111/j.2153-3490.1973.tb01604.x.

Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl Jr., P. R. Guenther, L. S. Waterman, and J. F. S. Chin. 1976. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28(6):538-551. https://doi.org/10.3402/tellusa.v28i6.11322.

Keeling, R. F., S. C. Piper, and M. Heimann. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381(6579):218-221. https://doi.org/10.1038/381218a0.

Keyes, T., G. Ridge, M. Klein, N. Phillips, R. Ackley, and Y. Yang. 2020. An enhanced procedure for urban mobile methane leak detection. Heliyon 6(10):e04876. https://doi.org/10.1016/j.heliyon.2020.e04876.

Kim, D. G., B. Bond-Lamberty, Y. Ryu, B. Seo, and D. Papale. 2022a. Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries. Biogeosciences 19(5):1435-1450. https://doi.org/10.5194/bg-19-1435-2022.

Kim, J., A. A. Shusterman, K. J. Lieschke, C. Newman, and R. C. Cohen. 2018. The BErkeley Atmospheric CO2 Observation Network: Field calibration and evaluation of low-cost air quality sensors. Atmospheric Measurement Techniques 11(4):1937-1946. https://doi.org/10.5194/amt-11-1937-2018.

Kim, J., A. J. Turner, H. L. Fitzmaurice, E. R. Delaria, C. Newman, P. J. Wooldridge, and R. C. Cohen. 2022b. Observing annual trends in vehicular CO2 emissions. Environmental Science & Technology 56(7):3925-3931. https://doi.org/10.1021/acs.est.1c06828.

Klaaßen, L., and C. Stoll. 2021. Harmonizing corporate carbon footprints. Nature Communications 12(1):6149. https://doi.org/10.1038/s41467-021-26349-x.

Klimont, Z., K. Kupiainen, C. Heyes, P. Purohit, J. Cofala, P. Rafaj, J. Borken-Kleefeld, and W. Schöpp. 2017. Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics 17(14):8681-8723. https://doi.org/10.5194/acp-17-8681-2017.

Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development 8(11):3695-3713. https://doi.org/10.5194/gmd-8-3695-2015.

Kloppenburg, S., A. Gupta, S. R. L. Kruk, S. Makris, R. Bergsvik, P. Korenhof, H. Solman, and H. M. Toonen. 2022. Scrutinizing environmental governance in a digital age: New ways of seeing, participating, and intervening. One Earth 5(3):232-241. https://doi.org/10.1016/j.oneear.2022.02.004.

Knapp, M., B. Hemmer, R. Kleinschek, M. Sindram, T. Schmitt, L. Pilz, B. Burger, and A. Butz. 2022. Towards carbon dioxide emission estimation with a stationary hyperspectral camera. Presented at EGU General Assembly 2022, Vienna, Austria & Online, May 23-27. https://doi.org/10.5194/egusphere-egu22-3924.

Kona, A., P. Bertoldi, F. Monforti-Ferrario, S. Rivas, and J. F. Dallemand. 2018. Covenant of mayors signatories leading the way towards 1.5 degree global warming pathway. Sustainable Cities and Society 41:568-575. https://doi.org/10.1016/j.scs.2018.05.017.

Kona, A., F. Monforti-Ferrario, P. Bertoldi, M. G. Baldi, G. Kakoulaki, N. Vetters, C. Thiel, G. Melica, E. Lo Vullo, A. Sgobbi, C. Ahlgren, and B. Posnic. 2021. Global Covenant of Mayors, a dataset of greenhouse gas emissions for 6200 cities in Europe and the Southern Mediterranean countries. Earth System Science Data 13(7):3551-3564. https://doi.org/10.5194/essd-13-3551-2021.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Kováč, D., A. Ač, L. Šigut, J. Peñuelas, J. Grace, and O. Urban. 2022. Combining NDVI, PRI and the quantum yield of solar-induced fluorescence improves estimations of carbon fluxes in deciduous and evergreen forests. Science of the Total Environment 829:154681. https://doi.org/10.1016/j.scitotenv.2022.154681.

Krautwurst, S., K. Gerilowski, J. Borchardt, N. Wildmann, M. Gałkowski, J. Swolkień, J. Marshall, A. Fiehn, A. Roiger, T. Ruhtz, C. Gerbig, J. Necki, J. P. Burrows, A. Fix, and H. Bovensmann. 2021. Quantification of CH4 coal mining emissions in Upper Silesia by passive airborne remote sensing observations with the Methane Airborne MAPper (MAMAP) instrument during the CO2 and Methane (CoMet) campaign. Atmospheric Chemistry and Physics 21(23):17345-17371. https://doi.org/10.5194/acp-21-17345-2021.

Krings, T., B. Neininger, K. Gerilowski, S. Krautwurst, M. Buchwitz, J. P. Burrows, C. Lindemann, T. Ruhtz, D. Schüttemeyer, and H. Bovensmann. 2018. Airborne remote sensing and in situ measurements of atmospheric CO2 to quantify point source emissions. Atmospheric Measurement Techniques 11(2):721-739. https://doi.org/10.5194/amt-11-721-2018.

Lamb, B. K., S. L. Edburg, T. W. Ferrara, T. Howard, M. R. Harrison, C. E. Kolb, A. Townsend-Small, W. Dyck, A. Possolo, and J. R. Whetstone. 2015. Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States. Environmental Science & Technology 49(8):5161-5169. https://doi.org/10.1021/es505116p.

Lauvaux, T., N. L. Miles, A. Deng, S. J. Richardson, M. O. Cambaliza, K. J. Davis, B. Gaudet, K. R. Gurney, J. Huang, D. O’Keefe, Y. Song, A. Karion, T. Oda, R. Patarasuk, I. Razlivanov, D. Sarmiento, P. Shepson, C. Sweeney, J. Turnbull, and K. Wu. 2016. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). Journal of Geophysical Research: Atmospheres 121(10):5213-5236. https://doi.org/10.1002/2015JD024473.

Lauvaux, T., K. R. Gurney, N. L. Miles, K. J. Davis, S. J. Richardson, A. Deng, B. J. Nathan, T. Oda, J. A. Wang, L. Hutyra, and J. Turnbull. 2020. Policy-relevant assessment of urban CO2 emissions. Environmental Science & Technology 54(16):10237-10245. https://doi.org/10.1021/acs.est.0c00343.

Lauvaux, T., C. Giron, M. Mazzolini, A. d’Aspremont, R. Duren, D. Cusworth, D. Shindell, and P. Ciais. 2022. Global assessment of oil and gas methane ultra-emitters. Science 375(6580):557-561. https://doi.org/10.1126/science.abj4351.

Le Quéré, C., R. B. Jackson, M. W. Jones, A. J. P. Smith, S. Abernethy, R. M. Andrew, A. J. De-Gol, D. R. Willis, Y. Shan, J. G. Canadell, P. Friedlingstein, F. Creutzig, and G. P. Peters. 2020. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 10(7):647-653. https://doi.org/10.1038/s41558-020-0797-x.

Lee, D. J., and B. Stvilia. 2014. Developing a data identifier taxonomy. Cataloging & Classification Quarterly 52(3):303-336. https://doi.org/10.1080/01639374.2014.880166.

Levy, B. S., and J. A. Patz. 2015. Climate change, human rights, and social justice. Annals of Global Health 81(3):310-322. https://doi.org/10.1016/j.aogh.2015.08.008.

Lin, J. C., L. Mitchell, E. Crosman, D. L. Mendoza, M. Buchert, R. Bares, B. Fasoli, D. R. Bowling, D. Pataki, D. Catharine, C. Strong, K. R. Gurney, R. Patarasuk, M. Baasandorj, A. Jacques, S. Hoch, J. Horel, and J. Ehleringer. 2018. CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake City urban area. Bulletin of the American Meteorological Society 99(11):2325-2339. https://doi.org/10.1175/BAMS-D-17-0037.1.

Linden, O., A. Jerneloev, and J. Egerup. 2004. The Environmental Impacts of the Gulf War 1991. IIASA Interim Report. Laxenburg, Austria: International Institute for Applied Systems Analysis. https://pure.iiasa.ac.at/id/eprint/7427/.

Lindroth, A., and L. Tranvik. 2021. Accounting for all territorial emissions and sinks is important for development of climate mitigation policies. Carbon Balance and Management 16(1):10. https://doi.org/10.1186/s13021-021-00173-8.

Liu, Z., D. Guan, W. Wei, S. J. Davis, P. Ciais, J. Bai, S. Peng, Q. Zhang, K. Hubacek, G. Marland, R. J. Andres, D. Crawford-Brown, J. Lin, H. Zhao, C. Hong, T. A. Boden, K. Feng, G. P. Peters, F. Xi, J. Liu, Y. Li, Y. Zhao, N. Zeng, and K. He. 2015. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565):335-338. https://doi.org/10.1038/nature14677.

Liu, Z., P. Ciais, Z. Deng, S. J. Davis, B. Zheng, Y. Wang, D. Cui, B. Zhu, X. Dou, P. Ke, T. Sun, R. Guo, H. Zhong, O. Boucher, F.-M. Bréon, C. Lu, R. Guo, J. Xue, E. Boucher, K. Tanaka, and F. Chevallier. 2020a. Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data 7(1):392. https://doi.org/10.1038/s41597-020-00708-7.

Liu, Z., P. Ciais, Z. Deng, R. Lei, S. J. Davis, S. Feng, B. Zheng, D. Cui, X. Dou, B. Zhu, R. Guo, P. Ke, T. Sun, C. Lu, P. He, Y. Wang, X. Yue, Y. Wang, Y. Lei, H. Zhou, Z. Cai, Y. Wu, R. Guo, T. Han, J. Xue, O. Boucher, E. Boucher, F. Chevallier, K. Tanaka, Y. Wei, H. Zhong, C. Kang, N. Zhang, B. Chen, F. Xi, M. Liu, F.-M. Bréon, Y. Lu, Q. Zhang, D. Guan, P. Gong, D. M. Kammen, K. He, and H. J. Schellnhuber. 2020b. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11(1):5172. https://doi.org/10.1038/s41467-020-18922-7.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Lopez, M., M. Schmidt, M. Delmotte, A. Colomb, V. Gros, C. Janssen, S. J. Lehman, D. Mondelain, O. Perrussel, M. Ramonet, I. Xueref-Remy, and P. Bousquet. 2013. CO, NOx and 13CO2 as tracers for fossil fuel CO2: Results from a pilot study in Paris during winter 2010. Atmospheric Chemistry and Physics 13(15):7343-7358. https://doi.org/10.5194/acp-13-7343-2013.

López-Ballesteros, A., J. Beck, A. Bombelli, E. Grieco, E. K. Lorencová, L. Merbold, C. Brümmer, W. Hugo, R. Scholes, D. Vačkář, A. Vermeulen, M. Acosta, K. Butterbach-Bahl, J. Helmschrot, D.-G. Kim, M. Jones, V. Jorch, M. Pavelka, I. Skjelvan, and M. Saunders. 2018. Towards a feasible and representative pan-African research infrastructure network for GHG observations. Environmental Research Letters 13(8):085003. https://doi.org/10.1088/1748-9326/aad66c.

Lopez-Coto, I., X. Ren, O. E. Salmon, A. Karion, P. B. Shepson, R. R. Dickerson, A. Stein, K. Prasad, and J. R. Whetstone. 2020. Wintertime CO2, CH4, and CO emissions estimation for the Washington, DC–Baltimore metropolitan area using an inverse modeling technique. Environmental Science & Technology 54(5):2606-2614. https://doi.org/10.1021/acs.est.9b06619.

Lu, X., D. J. Jacob, H. Wang, J. D. Maasakkers, Y. Zhang, T. R. Scarpelli, L. Shen, Z. Qu, M. P. Sulprizio, H. Nesser, A. A. Bloom, S. Ma, J. R. Worden, S. Fan, R. J. Parker, H. Boesch, R. Gautam, D. Gordon, M. D. Moran, F. Reuland, C. A. O. Villasana, and A. Andrews. 2022. Methane emissions in the United States, Canada, and Mexico: Evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations. Atmospheric Chemistry and Physics 22(1):395-418. https://doi.org/10.5194/acp-22-395-2022.

Lux, Z. A., D. Thatmann, S. Zickau, and F. Beierle. 2020. Distributed-ledger-based authentication with decentralized identifiers and verifiable credentials. Presented at 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), September 28-30.

Lyon, D. R., B. Hmiel, R. Gautam, M. Omara, K. A. Roberts, Z. R. Barkley, K. J. Davis, N. L. Miles, V. C. Monteiro, S. J. Richardson, S. Conley, M. L. Smith, D. J. Jacob, L. Shen, D. J. Varon, A. Deng, X. Rudelis, N. Sharma, K. T. Story, A. R. Brandt, M. Kang, E. A. Kort, A. J. Marchese, and S. P. Hamburg. 2021. Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic. Atmospheric Chemistry and Physics 21(9):6605-6626. https://doi.org/10.5194/acp-21-6605-2021.

Maasakkers, J. D., D. J. Jacob, M. P. Sulprizio, A. J. Turner, M. Weitz, T. Wirth, C. Hight, M. DeFigueiredo, M. Desai, R. Schmeltz, L. Hockstad, A. A. Bloom, K. W. Bowman, S. Jeong, and M. L. Fischer. 2016. Gridded national inventory of U.S. methane emissions. Environmental Science & Technology 50(23):13123-13133. https://doi.org/10.1021/acs.est.6b02878.

MacBean, N., F. Maignan, C. Bacour, P. Lewis, P. Peylin, L. Guanter, P. Köhler, J. Gómez-Dans, and M. Disney. 2018. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Scientific Reports 8(1):1973. https://doi.org/10.1038/s41598-018-20024-w.

Machida, T., H. Matsueda, Y. Sawa, Y. Nakagawa, K. Hirotani, N. Kondo, K. Goto, T. Nakazawa, K. Ishikawa, and T. Ogawa. 2008. Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. Journal of Atmospheric and Oceanic Technology 25(10):1744-1754. https://doi.org/10.1175/2008JTECHA1082.1.

Mallia, D. V., L. E. Mitchell, L. Kunik, B. Fasoli, R. Bares, K. R. Gurney, D. L. Mendoza, and J. C. Lin. 2020. Constraining urban CO2 emissions using mobile observations from a light rail public transit platform. Environmental Science & Technology 54(24):15613-15621. https://doi.org/10.1021/acs.est.0c04388.

Manning, A. J. 2011. The challenge of estimating regional trace gas emissions from atmospheric observations. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1943):1943-1954. https://doi.org/10.1098/rsta.2010.0321.

Manning, A. J., S. O’Doherty, A. R. Jones, P. G. Simmonds, and R. G. Derwent. 2011. Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach. Journal of Geophysical Research: Atmospheres 116(D2). https://doi.org/10.1029/2010JD014763.

Manning, A. J., A. L. Redington, D. Say, S. O’Doherty, D. Young, P. G. Simmonds, M. K. Vollmer, J. Mühle, J. Arduini, G. Spain, A. Wisher, M. Maione, T. J. Schuck, K. Stanley, S. Reimann, A. Engel, P. B. Krummel, P. J. Fraser, C. M. Harth, P. K. Salameh, R. F. Weiss, R. Gluckman, P. N. Brown, J. D. Watterson, and T. Arnold. 2021. Evidence of a recent decline in UK emissions of hydrofluorocarbons determined by the InTEM inverse model and atmospheric measurements. Atmospheric Chemistry and Physics 21(16):12739-12755. https://doi.org/10.5194/acp-21-12739-2021.

Marklein, A. R., D. Meyer, M. L. Fischer, S. Jeong, T. Rafiq, M. Carr, and F. M. Hopkins. 2021. Facility-scale inventory of dairy methane emissions in California: Implications for mitigation. Earth System Science Data 13(3):1151-1166. https://doi.org/10.5194/essd-13-1151-2021.

Marland, G. 2008. Uncertainties in accounting for CO2 from fossil fuels. Journal of Industrial Ecology 12(2):136-139. https://doi.org/10.1111/j.1530-9290.2008.00014.x.

Marland, G., and R. M. Rotty. 1984. Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950–1982. Tellus B 36B(4):232-261. https://doi.org/10.1111/j.1600-0889.1984.tb00245.x.

Marlowe, J., and A. Clarke. 2022. Carbon accounting: A systematic literature review and directions for future research. Green Finance 4(1):71-87. https://doi.org/10.3934/GF.2022004.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Masanet, E., A. Shehabi, N. Lei, S. Smith, and J. Koomey. 2020. Recalibrating global data center energy-use estimates. Science 367(6481):984-986. https://doi.org/10.1126/science.aba3758.

Matsueda, H., H. Y. Inoue, and M. Ishii. 2002. Aircraft observation of carbon dioxide at 8–13 km altitude over the western Pacific from 1993 to 1999. Tellus B 54(1):1-21. https://doi.org/10.1034/j.1600-0889.2002.00304.x.

Matsueda, H., T. Machida, Y. Sawa, Y. Nakagawa, K. Hirotani, H. Ikeda, N. Kondo, and K. Goto. 2008. Evaluation of atmospheric CO2 measurements from new flask air sampling of JAL airliner observations. Papers in Meteorology and Geophysics 59:1-17. https://doi.org/10.2467/mripapers.59.1.

McGlynn, E., S. Li, M. F. Berger, M. Amend, and K. L. Harper. 2022. Addressing uncertainty and bias in land use, land use change, and forestry greenhouse gas inventories. Climatic Change 170(1):5. https://doi.org/10.1007/s10584-021-03254-2.

Meijer, Y. 2022. International satellite monitoring and top-down constraints on greenhouse gas emissions. Presented at Greenhouse Gas Emissions Monitoring, Inventories, and Data Integration: Understanding the Landscape. National Academies of Sciences, Engineering, and Medicine, Board on Atmospheric Sciences and Climate, Washington, DC, June 2.

Meinshausen, M., E. Vogel, A. Nauels, K. Lorbacher, N. Meinshausen, D. M. Etheridge, P. J. Fraser, S. A. Montzka, P. J. Rayner, C. M. Trudinger, P. B. Krummel, U. Beyerle, J. G. Canadell, J. S. Daniel, I. G. Enting, R. M. Law, C. R. Lunder, S. O’Doherty, R. G. Prinn, S. Reimann, M. Rubino, G. J. M. Velders, M. K. Vollmer, R. H. J. Wang, and R. Weiss. 2017. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development 10(5):2057-2116. https://doi.org/10.5194/gmd-10-2057-2017.

Meng, T., X. Jing, Z. Yan, and W. Pedrycz. 2020. A survey on machine learning for data fusion. Information Fusion 57:115-129. https://doi.org/10.1016/j.inffus.2019.12.001.

Miles, N. L., S. J. Richardson, T. Lauvaux, K. J. Davis, N. V. Balashov, A. Deng, J. C. Turnbull, C. Sweeney, K. R. Gurney, R. Patarasuk, I. Razlivanov, M. O. L. Cambaliza, and P. B. Shepson. 2017. Quantification of urban atmospheric boundary layer greenhouse gas dry mole fraction enhancements in the dormant season: Results from the Indianapolis Flux Experiment (INFLUX). Elementa: Science of the Anthropocene 5. https://doi.org/10.1525/elementa.127.

Miller, J. B., S. J. Lehman, S. A. Montzka, C. Sweeney, B. R. Miller, A. Karion, C. Wolak, E. J. Dlugokencky, J. Southon, J. C. Turnbull, and P. P. Tans. 2012. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. Journal of Geophysical Research: Atmospheres 117(D8). https://doi.org/10.1029/2011JD017048.

Miller, J. B., S. J. Lehman, K. R. Verhulst, C. E. Miller, R. M. Duren, V. Yadav, S. Newman, and C. D. Sloop. 2020. Large and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon. Proceedings of the National Academy of Sciences 117(43):26681-26687. https://doi.org/10.1073/pnas.2005253117.

Miller, S. M., A. M. Michalak, R. G. Detmers, O. P. Hasekamp, L. M. P. Bruhwiler, and S. Schwietzke. 2019. China’s coal mine methane regulations have not curbed growing emissions. Nature Communications 10(1):303. https://doi.org/10.1038/s41467-018-07891-7.

Milojevic-Dupont, N., and F. Creutzig. 2021. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustainable Cities and Society 64:102526. https://doi.org/10.1016/j.scs.2020.102526.

Mingle, J. 2019. Methane detectives: Can a wave of new technology slash natural gas leaks? Yale Environment 360. https://e360.yale.edu/features/methane-detectives-can-a-wave-of-new-technology-slash-natural-gas-leaks.

Minx, J., G. Baiocchi, T. Wiedmann, J. Barrett, F. Creutzig, K. Feng, M. Förster, P.-P. Pichler, H. Weisz, and K. Hubacek. 2013. Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters 8(3):035039. https://doi.org/10.1088/1748-9326/8/3/035039.

Minx, J. C., W. F. Lamb, R. M. Andrew, J. G. Canadell, M. Crippa, N. Döbbeling, P. M. Forster, D. Guizzardi, J. Olivier, G. P. Peters, J. Pongratz, A. Reisinger, M. Rigby, M. Saunois, S. J. Smith, E. Solazzo, and H. Tian. 2021. A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data 13(11):5213-5252. https://doi.org/10.5194/essd-13-5213-2021.

Mitchell, A. L., D. S. Tkacik, J. R. Roscioli, S. C. Herndon, T. I. Yacovitch, D. M. Martinez, T. L. Vaughn, L. L. Williams, M. R. Sullivan, C. Floerchinger, M. Omara, R. Subramanian, D. Zimmerle, A. J. Marchese, and A. L. Robinson. 2015. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement results. Environmental Science & Technology 49(5):3219-3227. https://doi.org/10.1021/es5052809.

Mitchell, L. E., E. T. Crosman, A. A. Jacques, B. Fasoli, L. Leclair-Marzolf, J. Horel, D. R. Bowling, J. R. Ehleringer, and J. C. Lin. 2018. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmospheric Environment 187:9-23. https://doi.org/10.1016/j.atmosenv.2018.05.044.

Monteil, G., G. Broquet, M. Scholze, M. Lang, U. Karstens, C. Gerbig, F. T. Koch, N. E. Smith, R. L. Thompson, I. T. Luijkx, E. White, A. Meesters, P. Ciais, A. L. Ganesan, A. Manning, M. Mischurow, W. Peters, P. Peylin, J. Tarniewicz, M. Rigby, C. Rödenbeck, A. Vermeulen, and E. M. Walton. 2020. The regional European atmospheric transport inversion comparison, EUROCOM: First results on European-wide terrestrial carbon fluxes for the period 2006–2015. Atmospheric Chemistry and Physics 20(20):12063-12091. https://doi.org/10.5194/acp-20-12063-2020.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Montzka, S. A., G. S. Dutton, P. Yu, E. Ray, R. W. Portmann, J. S. Daniel, L. Kuijpers, B. D. Hall, D. Mondeel, C. Siso, J. D. Nance, M. Rigby, A. J. Manning, L. Hu, F. Moore, B. R. Miller, and J. W. Elkins. 2018. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557(7705):413-417. https://doi.org/10.1038/s41586-018-0106-2.

Montzka, S. A., G. S. Dutton, R. W. Portmann, M. P. Chipperfield, S. Davis, W. Feng, A. J. Manning, E. Ray, M. Rigby, B. D. Hall, C. Siso, J. D. Nance, P. B. Krummel, J. Mühle, D. Young, S. O’Doherty, P. K. Salameh, C. M. Harth, R. G. Prinn, R. F. Weiss, J. W. Elkins, H. Walter-Terrinoni, and C. Theodoridi. 2021. A decline in global CFC-11 emissions during 2018−2019. Nature 590(7846):428-432. https://doi.org/10.1038/s41586-021-03260-5.

Mora, C., R. L. Rollins, K. Taladay, M. B. Kantar, M. K. Chock, M. Shimada, and E. C. Franklin. 2018. Bitcoin emissions alone could push global warming above 2°C. Nature Climate Change 8(11):931-933. https://doi.org/10.1038/s41558-018-0321-8.

Moran, D., K. Kanemoto, M. Jiborn, R. Wood, J. Többen, and K. C. Seto. 2018. Carbon footprints of 13 000 cities. Environmental Research Letters 13(6):064041. https://doi.org/10.1088/1748-9326/aac72a.

Moran, D., P. P. Pichler, H. Zheng, H. Muri, J. Klenner, D. Kramel, J. Többen, H. Weisz, T. Wiedmann, A. Wyckmans, A. H. Strømman, and K. R. Gurney. 2022. Estimating CO2 emissions for 108 000 European cities. Earth System Science Data 14(2):845-864. https://doi.org/10.5194/essd-14-845-2022.

Morrison, R., N. C. Mazey, and S. C. Wingreen. 2020. The DAO controversy: The case for a new species of corporate governance? Frontiers in Blockchain 3(25). https://doi.org/10.3389/fbloc.2020.00025.

Mostafavi Pak, N., S. Ars, B. Lehman, D. Weaver, F. R. Vogel, and D. Wunch. 2019. Methane measurements using portable fourier transform spectrometers in the Greater Toronto Area. Presented at American Geophysical Union Fall Meeting, December 1.

Mueller, K. L., T. Lauvaux, K. R. Gurney, G. Roest, S. Ghosh, S. M. Gourdji, A. Karion, P. DeCola, and J. Whetstone. 2021. An emerging GHG estimation approach can help cities achieve their climate and sustainability goals. Environmental Research Letters 16(8):084003. https://doi.org/10.1088/1748-9326/ac0f25.

Müller, M., P. Graf, J. Meyer, A. Pentina, D. Brunner, F. Perez-Cruz, C. Hüglin, and L. Emmenegger. 2020. Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland. Atmospheric Measurement Techniques 13(7):3815-3834. https://doi.org/10.5194/amt-13-3815-2020.

Muralikrishna, I. V., and V. Manickam. 2017. Environmental Management: Science and Engineering for Industry. Kidlington, Oxford, UK: Butterworth-Heinemann.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: The National Academies Press. https://doi.org/10.17226/21852.

NASEM. 2018. Improving Characterization of Anthropogenic Methane Emissions in the United States. Washington, DC: The National Academies Press.

NASEM. 2019. Reproducibility and Replicability in Science. Washington, DC: The National Academies Press.

Nassar, R., T. G. Hill, C. A. McLinden, D. Wunch, D. B. A. Jones, and D. Crisp. 2017. Quantifying CO2 emissions from individual power plants from space. Geophysical Research Letters 44(19):10045-10053. https://doi.org/10.1002/2017GL074702.

Nathan, B. J., T. Lauvaux, J. C. Turnbull, S. J. Richardson, N. L. Miles, and K. R. Gurney. 2018. Source sector attribution of CO2 emissions using an urban CO/CO2 bayesian inversion system. Journal of Geophysical Research: Atmospheres 123(23):13611-13621. https://doi.org/10.1029/2018JD029231.

NDRC (National Development and Reform Commission). 2004. The People’s Republic of China’s initial national communication on climate change. Beijing: China Planning Press.

NDRC. 2012. The People’s Republic of China second national communication on climate change. Beijing: China Planning Press.

NDRC. 2016. The People’s Republic of China first biennial update report on climate change of China. Beijing: China Planning Press.

NDRC. 2019a. The People’s Republic of China second biennial update report on climate change of China. Beijing: China Planning Press.

NDRC. 2019b. The People’s Republic of China third national communication on climate change. Beijing: China Planning Press.

Nicholls, D., F. Barnes, F. Acrea, C. Chen, L. Y. Buluç, and M. M. Parker. 2015. Top-down and bottom-up approaches to greenhouse gas inventory methods—a comparison between national- and forest-scale reporting methods. Gen. Tech. Rep. PNW-GTR-906. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Nicolini, G., G. Antoniella, F. Carotenuto, A. Christen, P. Ciais, C. Feigenwinter, B. Gioli, S. Stagakis, E. Velasco, R. Vogt, H. C. Ward, J. Barlow, N. Chrysoulakis, P. Duce, M. Graus, C. Helfter, B. Heusinkveld, L. Järvi, T. Karl, S. Marras, V. Masson, B. Matthews, F. Meier, E. Nemitz, S. Sabbatini, D. Scherer, H. Schume, C. Sirca, G.-J. Steeneveld, C. Vagnoli, Y. Wang, A. Zaldei, B. Zheng, and D. Papale. 2022. Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts. Science of the Total Environment 830:154662. https://doi.org/10.1016/j.scitotenv.2022.154662.

NISO (National Information Standards Organization). 2013. NISO RP-15-2013, Recommended Practices for Online Supplemental Journal Article Materials. https://www.niso.org/publications/niso-rp-15-2013-recommended-practices-online-supplemental-journal-article-materials.

Niu, D., K. Wang, J. Wu, L. Sun, Y. Liang, X. Xu, and X. Yang. 2020. Can China achieve its 2030 carbon emissions commitment? Scenario analysis based on an improved general regression neural network. Journal of Cleaner Production 243:118558. https://doi.org/10.1016/j.jclepro.2019.118558.

Nosek, B. A., G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers, G. Chin, G. Christensen, M. Contestabile, A. Dafoe, E. Eich, J. Freese, R. Glennerster, D. Goroff, D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry, T. Madon, N. Malhotra, E. Mayo-Wilson, M. McNutt, E. Miguel, E. L. Paluck, U. Simonsohn, C. Soderberg, B. A. Spellman, J. Turitto, G. VandenBos, S. Vazire, E. J. Wagenmakers, R. Wilson, and T. Yarkoni. 2015. Promoting an open research culture. Science 348(6242):1422-1425. https://doi.org/10.1126/science.aab2374.

NRC (National Research Council). 2010. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. Washington, DC: The National Academies Press. https://doi.org/10.17226/12883.

Oda, T., S. Maksyutov, and R. J. Andres. 2018. The open-source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth System Science Data 10(1):87-107. https://doi.org/10.5194/essd-10-87-2018.

Oda, T., R. Bun, V. Kinakh, P. Topylko, M. Halushchak, G. Marland, T. Lauvaux, M. Jonas, S. Maksyutov, Z. Nahorski, M. Lesiv, O. Danylo, and J. Horabik-Pyzel. 2019. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitigation and Adaptation Strategies for Global Change 24(6):1007-1050. https://doi.org/10.1007/s11027-019-09877-2.

Oda, T., C. Haga, K. Hosomi, T. Matsui, and R. Bun. 2021. Errors and uncertainties associated with the use of unconventional activity data for estimating CO2 emissions: The case for traffic emissions in Japan. Environmental Research Letters 16(8):084058. https://doi.org/10.1088/1748-9326/ac109d.

OECD (Organisation for Economic Co-operation and Development). 2015. Climate Change Disclosure In G20 Countries: Stocktaking of corporate reporting schemes. Paris, France: Organisation for Economic Co-operation and Development. https://www.oecd.org/investment/corporate-climate-change-disclosure-report.htm.

Oertel, C., J. Matschullat, K. Zurba, F. Zimmermann, and S. Erasmi. 2016. Greenhouse gas emissions from soils—A review. Geochemistry 76(3):327-352. https://doi.org/10.1016/j.chemer.2016.04.002.

Olsen, S. C., D. J. Wuebbles, and B. Owen. 2013. Comparison of global 3-D aviation emissions datasets. Atmosperic Chemistry and Physics 13(1):429-441. https://doi.org/10.5194/acp-13-429-2013.

Omara, M., D. Zavala-Araiza, D. R. Lyon, B. Hmiel, K. A. Roberts, and S. P. Hamburg. 2022. Methane emissions from US low production oil and natural gas well sites. Nature Communications 13(1):2085. https://doi.org/10.1038/s41467-022-29709-3.

O’Rourke, P., S. J. Smith, A. R. Mott, H. Ahsan, E. E. Mcduffie, M. Crippa, Z. Klimont, B. Mcdonald, S. Wang, M. B. Nicholson, R. M. Hoesly, and L. Feng. 2021. CEDS v_2021_04_21 Gridded emissions data. https://www.osti.gov/dataexplorer/biblio/dataset/1779095.

Pablo-Romero, M. d. P., R. Pozo-Barajas, and A. Sánchez-Braza. 2018. Analyzing the effects of the benchmark local initiatives of Covenant of Mayors signatories. Journal of Cleaner Production 176:159-174. https://doi.org/10.1016/j.jclepro.2017.12.124.

Pachauri, R. K., M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ, J. A. Church, L. Clarke, Q. Dahe, P. Dasgupta, N. K. Dubash, O. Edenhofer, I. Elgizouli, C. B. Field, P. Forster, P. Friedlingstein, J. Fuglestvedt, L. Gomez-Echeverri, S. Hallegatte, G. Hegerl, M. Howden, K. Jiang, B. J. Cisneroz, V. Kattsov, H. Lee, K. J. Mach, J. Marotzke, M. D. Mastrandrea, L. Meyer, J. Minx, Y. Mulugetta, K. O’Brien, M. Oppenheimer, J. J. Pereira, R. Pichs-Madruga, G. K. Plattner, H. O. Pörtner, S. B. Power, B. Preston, N. H. Ravindranath, A. Reisinger, K. Riahi, M. Rusticucci, R. Scholes, K. Seyboth, Y. Sokona, R. Stavins, T. F. Stocker, P. Tschakert, D. v. Vuuren, and J. P. v. Ypserle. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. R. K. Pachauri and L. A. Meyer, eds. Geneva, Switzerland: IPCC.

Palermo, V., P. Bertoldi, M. Apostolou, A. Kona, and S. Rivas. 2020. Assessment of climate change mitigation policies in 315 cities in the Covenant of Mayors initiative. Sustainable Cities and Society 60:102258. https://doi.org/10.1016/j.scs.2020.102258.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Palmer, P. I., P. Suntharalingam, D. B. A. Jones, D. J. Jacob, D. G. Streets, Q. Fu, S. A. Vay, and G. W. Sachse. 2006. Using CO2:CO correlations to improve inverse analyses of carbon fluxes. Journal of Geophysical Research: Atmospheres 111(D12). https://doi.org/10.1029/2005JD006697.

Papale, D., G. Antoniella, G. Nicolini, B. Gioli, A. Zaldei, R. Vogt, C. Feigenwinter, S. Stagakis, N. Chrysoulakis, L. Järvi, E. Nemitz, C. Helfter, J. Barlow, F. Meier, E. Velasco, A. Christen, and V. Masson. 2020. Clear evidence of reduction in urban CO2 emissions as a result of COVID-19 lockdown across Europe. https://www.researchgate.net/publication/342392861_Clear_evidence_of_reduction_in_urban_CO_2_emissions_as_a_result_of_COVID-19_lockdown_across_Europe.

Parkinson, S. 2020. The carbon boot-print of the military. Responsible Science (2).

Pereira, P., F. Bašić, I. Bogunovic, and D. Barcelo. 2022. Russian-Ukrainian war impacts the total environment. Science of the Total Environment 837:155865. https://doi.org/10.1016/j.scitotenv.2022.155865.

Pérez-Martínez, P. J., R. M. Miranda, M. F. Andrade, and P. Kumar. 2020. Air quality and fossil fuel driven transportation in the Metropolitan Area of São Paulo. Transportation Research Interdisciplinary Perspectives 5:100137. https://doi.org/10.1016/j.trip.2020.100137.

Perugini, L., G. Pellis, G. Grassi, P. Ciais, H. Dolman, J. I. House, G. P. Peters, P. Smith, D. Günther, and P. Peylin. 2021. Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute? Environmental Science & Policy 122:116-126. https://doi.org/10.1016/j.envsci.2021.04.012.

Peters, G. P. 2008. From production-based to consumption-based national emission inventories. Ecological Economics 65(1):13-23. https://doi.org/10.1016/j.ecolecon.2007.10.014.

Peters, G. P., R. M. Andrew, J. G. Canadell, P. Friedlingstein, R. B. Jackson, J. I. Korsbakken, C. Le Quéré, and A. Peregon. 2020. Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change 10(1):3-6. https://doi.org/10.1038/s41558-019-0659-6.

Petrescu, A. M. R., G. P. Peters, G. Janssens-Maenhout, P. Ciais, F. N. Tubiello, G. Grassi, G. J. Nabuurs, A. Leip, G. Carmona-Garcia, W. Winiwarter, L. Höglund-Isaksson, D. Günther, E. Solazzo, A. Kiesow, A. Bastos, J. Pongratz, J. E. M. S. Nabel, G. Conchedda, R. Pilli, R. M. Andrew, M. J. Schelhaas, and A. J. Dolman. 2020. European anthropogenic AFOLU greenhouse gas emissions: A review and benchmark data. Earth System Science Data 12(2):961-1001. https://doi.org/10.5194/essd-12-961-2020.

Petrescu, A. M. R., M. J. McGrath, R. M. Andrew, P. Peylin, G. P. Peters, P. Ciais, G. Broquet, F. N. Tubiello, C. Gerbig, J. Pongratz, G. Janssens-Maenhout, G. Grassi, G. J. Nabuurs, P. Regnier, R. Lauerwald, M. Kuhnert, J. Balkovič, M. J. Schelhaas, H. A. C. Denier van der Gon, E. Solazzo, C. Qiu, R. Pilli, I. B. Konovalov, R. A. Houghton, D. Günther, L. Perugini, M. Crippa, R. Ganzenmüller, I. T. Luijkx, P. Smith, S. Munassar, R. L. Thompson, G. Conchedda, G. Monteil, M. Scholze, U. Karstens, P. Brockmann, and A. J. Dolman. 2021. The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2018. Earth System Science Data 13(5):2363-2406. https://doi.org/10.5194/essd-13-2363-2021.

Peylin, P. 2022. Emerging Approaches and Integration of Multiple Data Sources. Presented at Greenhouse Gas Emissions Monitoring, Inventories, and Data Integration: Understanding the Landscape, Washington, DC, June 2, 2022.

Peylin, P., R. M. Law, K. R. Gurney, F. Chevallier, A. R. Jacobson, T. Maki, Y. Niwa, P. K. Patra, W. Peters, P. J. Rayner, C. Rödenbeck, I. T. van der Laan-Luijkx, and X. Zhang. 2013. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10(10):6699-6720. https://doi.org/10.5194/bg-10-6699-2013.

Pfadt-Trilling, A. R., and M.-O. P. Fortier. 2021. Greenwashed energy transitions: Are US cities accounting for the life cycle greenhouse gas emissions of energy resources in climate action plans? Energy and Climate Change 2:100020. https://doi.org/10.1016/j.egycc.2020.100020.

Phillips, N. G., R. Ackley, E. R. Crosson, A. Down, L. R. Hutyra, M. Brondfield, J. D. Karr, K. Zhao, and R. B. Jackson. 2013. Mapping urban pipeline leaks: Methane leaks across Boston. Environmental Pollution 173:1-4. https://doi.org/10.1016/j.envpol.2012.11.003.

Pickers, P. A., A. C. Manning, C. Le Quéré, G. L. Forster, I. T. Luijkx, C. Gerbig, L. S. Fleming, and W. T. Sturges. 2022. Novel quantification of regional fossil fuel CO2 reductions during COVID-19 lockdowns using atmospheric oxygen measurements. Science Advances 8(16):eabl9250. https://doi.org/10.1126/sciadv.abl9250.

Pinty, B., G. Janssens-Maenhout, M. Dowell, H. Zunker, T. Brunhes, P. Ciais, D. Dee, H. D. v. d. Gon, H. Dolman, M. Drinkwater, R. Engelen, M. Heimann, K. Holmlund, R. Husband, A. Kentarchos, Y. Meijer, P. Palmer, and M. Scholze. 2017. An Operational Anthropogenic CO2 Emissions Monitoring & Verification Support Capacity: Baseline Requirements, Model Components and Functional Architecture. Brussels: European Commission Joint Research Centre. https://doi.org/10.2760/39384.

Pinty, B., P. Ciais, D. Dee, H. Dolman, M. Dowell, R. Engelen, K. Holmlund, G. Janssens-Maenhout, Y. Meijer, P. Palmer, M. Scholze, H. D. v. d. Gon, M. Heimann, O. Juvyns, A. Kentarchos, and H. Zunker. 2019. An Operational Anthropogenic CO2 Emissions Monitoring & Verification Support Capacity: Needs and High Level Requirements for In Situ Measurements. Brussels: European Commission Joint Research Centre. https://doi.org/10.2760/182790.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Pitt, J. R., I. Lopez-Coto, K. D. Hajny, J. Tomlin, R. Kaeser, T. Jayarathne, B. H. Stirm, C. R. Floerchinger, C. P. Loughner, C. K. Gately, L. R. Hutyra, K. R. Gurney, G. S. Roest, J. Liang, S. Gourdji, A. Karion, J. R. Whetstone, and P. B. Shepson. 2022. New York City greenhouse gas emissions estimated with inverse modeling of aircraft measurements. Elementa: Science of the Anthropocene 10(1). https://doi.org/10.1525/elementa.2021.00082.

Plant, G., E. A. Kort, C. Floerchinger, A. Gvakharia, I. Vimont, and C. Sweeney. 2019. Large fugitive methane emissions from urban centers along the U.S. East Coast. Geophysical Research Letters 46(14):8500-8507. https://doi.org/10.1029/2019GL082635.

Platt, M., J. Scdlmeir, D. Platt, J. Xu, P. Tasca, N. Vadgama, and J. I. Ibañez. 2021. The energy footprint of blockchain consensus mechanisms beyond proof-of-work. Presented at IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C).

Quaas, J., H. Jia, C. Smith, A. L. Albright, W. Aas, N. Bellouin, O. Boucher, M. Doutriaux-Boucher, P. M. Forster, D. Grosvenor, S. Jenkins, Z. Klimont, N. G. Loeb, X. Ma, V. Naik, F. Paulot, P. Stier, M. Wild, G. Myhre, and M. Schulz. 2022. Robust evidence for reversal in the aerosol effective climate forcing trend. Atmospheric Chemistry and Physics Discussions 2022:1-25. https://doi.org/10.5194/acp-2022-295.

Quick, J. C. 2014. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: A comparison of two accounting methods. Journal of the Air and Waste Management Association 64(1):73-79. https://doi.org/10.1080/10962247.2013.833146.

Ramachandran, A., and D. Kantarcioglu. 2017. Using blockchain and smart contracts for secure data provenance management. arXiv preprint arXiv:1709.10000. https://doi.org/10.48550/arXiv.1709.10000.

Ramonet, M., P. Ciais, T. Aalto, C. Aulagnier, F. Chevallier, D. Cipriano, T. J. Conway, L. Haszpra, V. Kazan, F. Meinhardt, J.-D. Paris, M. Schmidt, P. Simmonds, I. Xueref-Rémy, and J. N. Necki. 2010. A recent build-up of atmospheric CO2 over Europe. Part 1: Observed signals and possible explanations. Tellus B 62(1):1-13. https://doi.org/10.1111/j.1600-0889.2009.00442.x.

Ravikumar, A. P., J. Wang, and A. R. Brandt. 2017. Are optical gas imaging technologies effective for methane leak detection? Environmental Science & Technology 51(1):718-724. https://doi.org/10.1021/acs.est.6b03906.

Rayner, P. J., M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. 2005. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Global Biogeochemical Cycles 19(2). https://doi.org/10.1029/2004GB002254.

Rayner, P. J., R. M. Law, C. E. Allison, R. J. Francey, C. M. Trudinger, and C. Pickett-Heaps. 2008. Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Global Biogeochemical Cycles 22(3). https://doi.org/10.1029/2007GB003068.

Rebmann, C., M. Aubinet, H. Scmid, N. Arriga, M. Aurela, G. Burba, R. Clement, A. D. Ligne, G. Fratini, B. Gielen, J. Grace, A. Graf, P. Gross, S. Haapanala, M. Herbst, L. Hörtnagl, A. Ibrom, L. Joly, N. Kljun, O. K. l. Kowalski, A. Lindroth, D. Loustau, I. Mammarella, M. Mauder, L. Merbold, S. Metzger, M. Mölder, L. Montagnani, D. Papale, M. Pavelka, M. Peichl, M. Roland, P. Serrano-Ortiz, L. Siebicke, R. Steinbrecher, J. Tuovinen, T. Vesala, G. Wohlfahrt, and D. Franz. 2018. ICOS eddy covariance flux-station site setup: A review. International Agrophysics 32(4):471-494. https://doi.org/10.1515/intag-2017-0044.

Reckien, D., M. Salvia, O. Heidrich, J. M. Church, F. Pietrapertosa, S. De Gregorio-Hurtado, V. D’Alonzo, A. Foley, S. G. Simoes, E. Krkoška Lorencová, H. Orru, K. Orru, A. Wejs, J. Flacke, M. Olazabal, D. Geneletti, E. Feliu, S. Vasilie, C. Nador, A. Krook-Riekkola, M. Matosović, P. A. Fokaides, B. I. Ioannou, A. Flamos, N.-A. Spyridaki, M. V. Balzan, O. Fülöp, I. Paspaldzhiev, S. Grafakos, and R. Dawson. 2018. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. Journal of Cleaner Production 191:207-219. https://doi.org/10.1016/j.jclepro.2018.03.220.

Reuter, M., M. Buchwitz, O. Schneising, S. Krautwurst, C. W. O’Dell, A. Richter, H. Bovensmann, and J. P. Burrows. 2019. Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics 19(14):9371-9383. https://doi.org/10.5194/acp-19-9371-2019.

Rigby, M., S. Park, T. Saito, L. M. Western, A. L. Redington, X. Fang, S. Henne, A. J. Manning, R. G. Prinn, G. S. Dutton, P. J. Fraser, A. L. Ganesan, B. D. Hall, C. M. Harth, J. Kim, K. R. Kim, P. B. Krummel, T. Lee, S. Li, Q. Liang, M. F. Lunt, S. A. Montzka, J. Mühle, S. O’Doherty, M. K. Park, S. Reimann, P. K. Salameh, P. Simmonds, R. L. Tunnicliffe, R. F. Weiss, Y. Yokouchi, and D. Young. 2019. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569(7757):546-550. https://doi.org/10.1038/s41586-019-1193-4.

Rißmann, M., J. Chen, G. Osterman, F. Dietrich, M. Makowski, X. Zhao, F. Hase, and M. Kiel. 2022. Comparison of OCO-2 target observations to MUCCnet—Is it possible to capture urban XCO2 gradients from space? Atmospheric Measurement Techniques Discussions 2022:1-27. https://doi.org/10.5194/amt-2022-71.

Rödenbeck, C., S. Houweling, M. Gloor, and M. Heimann. 2003. Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport. Tellus B 55(2):488-497. https://doi.org/10.1034/j.1600-0889.2003.00033.x.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Rolnick, D., P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. S. Luccioni, T. Maharaj, E. D. Sherwin, S. K. Mukkavilli, K. P. Kording, C. P. Gomes, A. Y. Ng, D. Hassabis, J. C. Platt, F. Creutzig, J. Chayes, and Y. Bengio. 2022. Tackling climate change with machine learning. ACM Computing Surveys 55(2):Article 42. https://doi.org/10.1145/3485128.

Roman-White, S. A., J. A. Littlefield, K. G. Fleury, D. T. Allen, P. Balcombe, K. E. Konschnik, J. Ewing, G. B. Ross, and F. George. 2021. LNG supply chains: a supplier-specific life-cycle assessment for improved emission accounting. ACS Sustainable Chemistry & Engineering 9(32):10857-10867. https://doi.org/10.1021/acssuschemeng.1c03307.

Roobaert, A., G. G. Laruelle, P. Landschützer, and P. Regnier. 2018. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: Quantification and spatial analysis. Biogeosciences 15(6):1701-1720. https://doi.org/10.5194/bg-15-1701-2018.

Roscioli, J. R., T. I. Yacovitch, C. Floerchinger, A. L. Mitchell, D. S. Tkacik, R. Subramanian, D. M. Martinez, T. L. Vaughn, L. Williams, D. Zimmerle, A. L. Robinson, S. C. Herndon, and A. J. Marchese. 2015. Measurements of methane emissions from natural gas gathering facilities and processing plants: Measurement methods. Atmospheric Measurement Techniques 8(5):2017-2035. https://doi.org/10.5194/amt-8-2017-2015.

Rosenzweig, C., W. Solecki, S. A. Hammer, and S. Mehrotra. 2010. Cities lead the way in climate–change action. Nature 467(7318):909-911. https://doi.org/10.1038/467909a.

Rupasinghe, R., B. B. Chomel, and B. Martínez-López. 2022. Climate change and zoonoses: A review of the current status, knowledge gaps, and future trends. Acta Tropica 226:106225. https://doi.org/10.1016/j.actatropica.2021.106225.

Rypdal, K., N. Paciornik, S. Eggleston, J. Goodwin, W. Irving, J. Penman, and M. Woodfield. 2006. Introduction to the 2006 Guidelines In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. S. Eggelston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe, eds. Hayama, Kanagawa, Japan: Institute for Global Environmental Strategies. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_1_Ch1_Introduction.pdf.

Saboya, E., G. Zazzeri, H. Graven, A. J. Manning, and S. Englund Michel. 2022. Continuous CH4 and δ13CH4 measurements in London demonstrate under-reported natural gas leakage. Atmospheric Chemistry and Physics 22(5):3595-3613. https://doi.org/10.5194/acp-22-3595-2022.

Salcedo-Sanz, S., P. Ghamisi, M. Piles, M. Werner, L. Cuadra, A. Moreno-Martínez, E. Izquierdo-Verdiguier, J. Muñoz-Marí, A. Mosavi, and G. Camps-Valls. 2020. Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. Information Fusion 63:256-272. https://doi.org/10.1016/j.inffus.2020.07.004.

Sargent, M. R., C. Floerchinger, K. McKain, J. Budney, E. W. Gottlieb, L. R. Hutyra, J. Rudek, and S. C. Wofsy. 2021. Majority of US urban natural gas emissions unaccounted for in inventories. Proceedings of the National Academy of Sciences 118(44):e2105804118. https://doi.org/doi:10.1073/pnas.2105804118.

Saunois, M., A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O’Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, and Q. Zhuang. 2020. The global methane budget 2000–2017. Earth System Science Data 12(3):1561-1623. https://doi.org/10.5194/essd-12-1561-2020.

Schaltegger, S., and M. Csutora. 2012. Carbon accounting for sustainability and management. Status quo and challenges. Journal of Cleaner Production 36:1-16. https://doi.org/10.1016/j.jclepro.2012.06.024.

Schelhaas, M.-J., G. M. Hengeveld, N. Heidema, E. Thürig, B. Rohner, G. Vacchiano, J. Vayreda, J. Redmond, J. Socha, J. Fridman, S. Tomter, H. Polley, S. Barreiro, and G.-J. Nabuurs. 2018. Species-specific, pan-European diameter increment models based on data of 2.3 million trees. Forest Ecosystems 5(1):21. https://doi.org/10.1186/s40663-018-0133-3.

Schletz, M., A. Hsu, B. Mapes, and M. Wainstein. 2022. Nested climate accounting for our atmospheric commons—digital technologies for trusted interoperability across fragmented systems. Frontiers in Blockchain 49. https://doi.org/10.3389/fbloc.2021.789953.

Schmidt, M., H. Glatzel-Mattheier, H. Sartorius, D. E. Worthy, and I. Levin. 2001. Western European N2O emissions: A top-down approach based on atmospheric observations. Journal of Geophysical Research: Atmospheres 106(D6):5507-5516. https://doi.org/10.1029/2000JD900701.

Schmidt, M., R. Graul, H. Sartorius, and I. Levin. 2003. The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget. Journal of Geophysical Research: Atmospheres 108(D19). https://doi.org/10.1029/2002JD003085.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Schuck, T. J., C. A. M. Brenninkmeijer, F. Slemr, I. Xueref-Remy, and A. Zahn. 2009. Greenhouse gas analysis of air samples collected onboard the CARIBIC passenger aircraft. Atmospheric Measurement Techniques 2(2):449-464. https://doi.org/10.5194/amt-2-449-2009.

Schuh, A. E., A. R. Jacobson, S. Basu, B. Weir, D. Baker, K. Bowman, F. Chevallier, S. Crowell, K. J. Davis, F. Deng, S. Denning, L. Feng, D. Jones, J. Liu, and P. I. Palmer. 2019. Quantifying the Iimpact of atmospheric transport uncertainty on CO2 surface flux estimates. Global Biogeochemical Cycles 33(4):484-500. https://doi.org/10.1029/2018GB006086.

Schwanitz, V. J., A. Wierling, M. E. Biresselioglu, M. Celino, M. H. Demir, M. Bałazińska, M. Kruczek, M. Paier, and D. Suna. 2022. Current state and call for action to accomplish findability, accessibility, interoperability, and reusability of low carbon energy data. Scientific Reports 12(1):5208. https://doi.org/10.1038/s41598-022-08774-0.

Schwietzke, S., O. A. Sherwood, L. M. P. Bruhwiler, J. B. Miller, G. Etiope, E. J. Dlugokencky, S. E. Michel, V. A. Arling, B. H. Vaughn, J. W. C. White, and P. P. Tans. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538(7623):88-91. https://doi.org/10.1038/nature19797.

Schwietzke, S., G. Pétron, S. Conley, C. Pickering, I. Mielke-Maday, E. J. Dlugokencky, P. P. Tans, T. Vaughn, C. Bell, D. Zimmerle, S. Wolter, C. W. King, A. B. White, T. Coleman, L. Bianco, and R. C. Schnell. 2017. Improved mechanistic understanding of natural gas methane emissions from spatially resolved aircraft measurements. Environmental Science & Technology 51(12):7286-7294. https://doi.org/10.1021/acs.est.7b01810.

SEC (Securities and Exchange Commission). 2022. The Enhancement and Standardization of Climate-Related Disclosures for Investors A Proposed Rule by the Securities and Exchange Commission on 05/12/2022. Document number 2022-10194. Federal Register 87 FR 29059. https://www.federalregister.gov/d/22022-10194.

Sedlmeir, J., H. U. Buhl, G. Fridgen, and R. Keller. 2020. The energy consumption of blockchain technology: Beyond myth. Business & Information Systems Engineering 62(6):599-608. https://doi.org/10.1007/s12599-020-00656-x.

Seto, K. C., S. Dhakal, A. Bigio, H. Blanco, G. C. Delgado, D. Dewar, L. Huang, A. Inaba, A. Kansal, S. Lwasa, J. McMahon, D. B. Müller, J. Murakami, H. Nagendra, and A. Ramaswami. 2014. Human settlements, infrastructure and spatial planning. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. v. Stechow, T. Zwickel, and J. C. Minx, eds. Cambridge, UK and New York, NY: Cambridge University Press.

Sha, Z., Y. Bai, R. Li, H. Lan, X. Zhang, J. Li, X. Liu, S. Chang, and Y. Xie. 2022. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management. Communications Earth & Environment 3(1):8. https://doi.org/10.1038/s43247-021-00333-1.

Shaddick, G., M. L. Thomas, A. Green, M. Brauer, A. van Donkelaar, R. Burnett, H. H. Chang, A. Cohen, R. V. Dingenen, C. Dora, S. Gumy, Y. Liu, R. Martin, L. A. Waller, J. West, J. V. Zidek, and A. Prüss-Ustün. 2018. Data integration model for air quality: A hierarchical approach to the global estimation of exposures to ambient air pollution. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67(1):231-253. https://doi.org/10.1111/rssc.12227.

Shan, Y., D. Guan, H. Zheng, J. Ou, Y. Li, J. Meng, Z. Mi, Z. Liu, and Q. Zhang. 2018. China CO2 emission accounts 1997–2015. Scientific Data 5(1):170201. https://doi.org/10.1038/sdata.2017.201.

Shan, Y., Q. Huang, D. Guan, and K. Hubacek. 2020. China CO2 emission accounts 2016–2017. Scientific Data 7(1):54. https://doi.org/10.1038/s41597-020-0393-y.

Shen, L., R. Gautam, M. Omara, D. Zavala-Araiza, J. Maasakkers, T. Scarpelli, A. Lorente, D. Lyon, J. Sheng, D. Varon, H. Nesser, Z. Qu, X. Lu, M. Sulprizio, S. Hamburg, and D. Jacob. 2022. Satellite quantification of oil and natural gas methane emissions in the US and Canada including contributions from individual basins. Atmospheric Chemistry and Physics, 22, 11203–11215, https://doi.org/10.5194/acp-22-11203-2022.

Shusterman, A. A., V. E. Teige, A. J. Turner, C. Newman, J. Kim, and R. C. Cohen. 2016. The BErkeley Atmospheric CO2 Observation Network: Initial evaluation. Atmospheric Chemistry and Physics 16(21):13449-13463. https://doi.org/10.5194/acp-16-13449-2016.

Siciliano, B., G. Dantas, C. M. da Silva, and G. Arbilla. 2020. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Science of the Total Environment 737:139765. https://doi.org/10.1016/j.scitotenv.2020.139765.

Smith, N. E., L. M. J. Kooijmans, G. Koren, E. van Schaik, A. M. van der Woude, N. Wanders, M. Ramonet, I. Xueref-Remy, L. Siebicke, G. Manca, C. Brümmer, I. T. Baker, K. D. Haynes, I. T. Luijkx, and W. Peters. 2020. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1810):20190509. https://doi.org/10.1098/rstb.2019.0509.

Solazzo, E., M. Crippa, D. Guizzardi, M. Muntean, M. Choulga, and G. Janssens-Maenhout. 2021. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmospheric Chemistry and Physics 21(7):5655-5683. https://doi.org/10.5194/acp-21-5655-2021.

Sporny, M., D. Longley, and D. Chadwick. 2022. Verifiable Credentials Data Model 1.1. W3C Recommendation 03 March 2022. https://www.w3.org/TR/vc-data-model.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Stanley, K. M., D. Say, J. Mühle, C. M. Harth, P. B. Krummel, D. Young, S. J. O’Doherty, P. K. Salameh, P. G. Simmonds, R. F. Weiss, R. G. Prinn, P. J. Fraser, and M. Rigby. 2020. Increase in global emissions of HFC-23 despite near-total expected reductions. Nature Communications 11(1):397. https://doi.org/10.1038/s41467-019-13899-4.

Stern, J. 2022. Measurement, Reporting, and Verification of Methane Emissions from Natural Gas and LNG Trade: Creating Transparent and Credible Frameworks. Oxford, UK: Oxford Institute for Energy Studies. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2022/01/Measurement-Reporting-and-Verification-of-Methane-Emissions-from-Natural-Gas-and-LNG-Trade-ET06.pdf.

Subramanian, R., L. L. Williams, T. L. Vaughn, D. Zimmerle, J. R. Roscioli, S. C. Herndon, T. I. Yacovitch, C. Floerchinger, D. S. Tkacik, A. L. Mitchell, M. R. Sullivan, T. R. Dallmann, and A. L. Robinson. 2015. Methane emissions from natural gas compressor stations in the transmission and storage sector: Measurements and comparisons with the EPA greenhouse gas reporting program protocol. Environmental Science & Technology 49(5):3252-3261. https://doi.org/10.1021/es5060258.

Sudmanns, M., D. Tiede, S. Lang, H. Bergstedt, G. Trost, H. Augustin, A. Baraldi, and T. Blaschke. 2020. Big Earth data: Disruptive changes in Earth observation data management and analysis? International Journal of Digital Earth 13(7):832-850. https://doi.org/10.1080/17538947.2019.1585976.

Super, I., H. A. C. Denier van der Gon, M. K. van der Molen, S. N. C. Dellaert, and W. Peters. 2020. Optimizing a dynamic fossil fuel CO2 emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO2, CO, NOx, and SO2. Geoscientific Model Development 13(6):2695-2721. https://doi.org/10.5194/gmd-13-2695-2020.

Susiluoto, J., M. Raivonen, L. Backman, M. Laine, J. Makela, O. Peltola, T. Vesala, and T. Aalto. 2018. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC. Geoscientific Model Development 11(3):1199-1228. https://doi.org/10.5194/gmd-11-1199-2018.

Szopa, S., V. Naik, B. Adhikary, P. Artaxo, T. Berntsen, W. D. Collins, S. Fuzzi, L. Gallardo, A. Kiendler-Scharr, Z. Klimont, H. Liao, N. Unger, and P. Zanis. 2021. Short-lived climate forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Observational contrains on the global atmospheric CO2 budget. Science 247(4949):1431-1438. https://doi.org/10.1126/science.247.4949.1431.

Tarantola, A. 1987. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier Science.

Thompson, R. L., L. Lassaletta, P. K. Patra, C. Wilson, K. C. Wells, A. Gressent, E. N. Koffi, M. P. Chipperfield, W. Winiwarter, E. A. Davidson, H. Tian, and J. G. Canadell. 2019. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change 9(12):993-998. https://doi.org/10.1038/s41558-019-0613-7.

Tollefson, J. 2022. Climate pledges from top companies crumble under scrutiny. Nature News. https://doi.org/10.1038/d41586-022-00366-2.

Truby, J. 2018. Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy Research & Social Science 44:399-410. https://doi.org/10.1016/j.erss.2018.06.009.

Tsai, C. W., C. F. Lai, M. C. Chiang, and L. T. Yang. 2014. Data mining for Internet of Things: A survey. IEEE Communications Surveys & Tutorials 16(1):77-97. https://doi.org/10.1109/SURV.2013.103013.00206.

Tsai, T. R., K. Du, and B. Stavropoulos. 2017. New system for detecting, mapping, monitoring, quantifying and reporting fugitive gas emissions. The APPEA Journal 57(2):561-566. https://doi.org/10.1071/AJ16098.

Tubiello, F. N., M. Salvatore, S. Rossi, A. Ferrara, N. Fitton, and P. Smith. 2013. The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters 8(1):015009. https://doi.org/10.1088/1748-9326/8/1/01500

Turnbull, J. C., E. D. Keller, T. Baisden, G. Brailsford, T. Bromley, M. Norris, and A. Zondervan. 2014. Atmospheric measurement of point source fossil CO2 emissions. Atmospheric Chemistry and Physics 14(10):5001-5014. https://doi.org/10.5194/acp-14-5001-2014.

Turnbull, J. C., C. Sweeney, A. Karion, T. Newberger, S. J. Lehman, P. P. Tans, K. J. Davis, T. Lauvaux, N. L. Miles, S. J. Richardson, M. O. Cambaliza, P. B. Shepson, K. Gurney, R. Patarasuk, and I. Razlivanov. 2015. Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment. Journal of Geophysical Research: Atmospheres 120(1):292-312. https://doi.org/10.1002/2014JD022555.

Turnbull, J. C., A. Karion, K. J. Davis, T. Lauvaux, N. L. Miles, S. J. Richardson, C. Sweeney, K. McKain, S. J. Lehman, K. R. Gurney, R. Patarasuk, J. Liang, P. B. Shepson, A. Heimburger, R. Harvey, and J. Whetstone. 2019. Synthesis of urban CO2 emission estimates from multiple methods from the Indianapolis Flux Project (INFLUX). Environmental Science & Technology 53(1):287-295. https://doi.org/10.1021/acs.est.8b05552.

Turnbull, J. C., L. G. Domingues, and N. Turton. 2022. Dramatic lockdown fossil fuel CO2 decrease detected by citizen science-supported atmospheric radiocarbon observations. Environmental Science & Technology 56(14):9882-9890. https://doi.org/10.1021/acs.est.1c07994.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Turner, A. J., J. Kim, H. Fitzmaurice, C. Newman, K. Worthington, K. Chan, P. J. Wooldridge, P. Köehler, C. Frankenberg, and R. C. Cohen. 2020. Observed impacts of COVID-19 on urban CO2 emissions. Geophysical Research Letters 47(22):e2020GL090037. https://doi.org/https://doi.org/10.1029/2020GL090037.

Umemiya, C., M. White, A. Amellina, and N. Shimizu. 2017. National greenhouse gas inventory capacity: An assessment of Asian developing countries. Environmental Science & Policy 78:66-73. https://doi.org/10.1016/j.envsci.2017.09.008.

UNEP (United Nations Environment Programme). 2019. Volume 1: Decision XXXI/3 TEAP Task Force Report on Unexpected Emissions of Trichlorofluoromethane (CFC-11). Report of the Technology and Economic Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. Nairobi, Kenya: United Nations Environment Programme. https://ozone.unep.org/system/files/documents/TEAP-TF-DecXXX-3-unexpected_CFC11_emissions-september2019.pdf.

UNEP. 2020. From Disclosure to Action: Applying TCFD Principles throughout Financial Institutions. Geneva, Switzerland: UNEP. https://www.unepfi.org/wordpress/wp-content/uploads/2020/10/Climate-Risk-Applications-From-Disclosure-to-Action.pdf.

UNEP. 2021a. An Eye on Methane: International Methane Emissions Observatory 2021 Report. Nairobi, Kenya: UNEP. https://www.unep.org/resources/report/eye-methane-international-methane-emissions-observatory-2021-report.

UNEP. 2021b. Volume 3: Decision XXXI/3 TEAP Task Force Report on Unexpected Emissions of Trichlorofluoromethane (CFC-11). Report of the Technology and Economic Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. Nairobi, Kenya: United Nations Environment Programme. https://ozone.unep.org/system/files/documents/Final_TEAP-DecisionXXXI-3-TF-Unexpected-Emissions-of-CFC-11-may2021.pdf.

UNEP and CCAC (Climate and Clean Air Coalition). 2021. Global Methane Assessment: Benefits and Costs of Mitigating Methane Estimates. Nairobi, Kenya: United Nations Environment Programme.

UNFCCC (United Nations Framework Convention on Climate Change). 1992. Status of Ratification of the Convention. https://unfccc.int/process-and-meetings/the-convention/status-of-ratification/status-of-ratification-of-the-convention.

UNFCCC. 2014. Report of the Conference of the Parties on its nineteenth session, held in Warsaw from 11 to 23 November 2013. Addendum. Part Two: Action taken by the Conference of the Parties at its nineteenth session. FCCC/CP/2013/10/Add.3. https://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf.

UNFCCC. 2015. The Paris Agreement. https://unfccc.int/sites/default/files/english_paris_agreement.pdf.

UNFCCC. 2019. Report of the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement on the third part of its first session, held in Katowice from 2 to 15 December 2018. Addendum. Part Two: Action taken by the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement. FCCC/PA/CMA/2018/3/Add.2. https://unfccc.int/sites/default/files/resource/CMA2018_03a02E.pdf.

UNFCCC. 2020. Preparing for Implementation of the Enhanced Transparency Framework under the Paris Agreement. https://unfccc.int/sites/default/files/resource/ETF%20Technical%20Handbook%20First%20Edition%20June_2020.pdf.

UNFCCC. 2021. National Inventory Submissions 2021. https://unfccc.int/ghg-inventories-annex-i-parties/2021.

UNFCCC. 2021b. Moving Towards the Enhanced Transparency Framework. https://unfccc.int/enhanced-transparency-framework.

UNFCCC. 2022a. National Inventory Submissions 2022. https://unfccc.int/ghg-inventories-annex-i-parties/2022.

UNFCCC. 2022b. The Role of Systematic Earth Observations in the Global Stocktake. https://www4.unfccc.int/sites/SubmissionsStaging/Documents/202203012343---SO-in-GST-2022-final.pdf.

UNFCCC. n.d.-a. Global Stocktake. https://unfccc.int/topics/global-stocktake/global-stocktake#eq-1.

UNFCCC. n.d.-b. National Communication Submissions from Non-Annex I Parties. https://unfccc.int/non-annex-I-NCs.

UNFCCC. n.d.-c. Biennial Update Report Submissions from Non-Annex I Parties. https://unfccc.int/BURs.

UNSD (United Nations Statistics Division). 2022. Background Document to the Report of the Secretary-General on Climate Change Statistics (E/CN.3/2022/17). Global Consultation on the Global Set. https://unstats.un.org/unsd/statcom/53rd-session/documents/BG-3m-GlobalConsultationontheGlobalSet-E.pdf.

van Genderen, J., M. F. Goodchild, H. Guo, C. Yang, S. Nativi, L. Wang, and C. Wang. 2020. Digital Earth challenges and future trends. In Manual of Digital Earth. H. Guo, M. F. Goodchild, and A. Annoni, eds. Singapore: Springer Singapore.

Varon, D. J., D. J. Jacob, J. McKeever, D. Jervis, B. O. A. Durak, Y. Xia, and Y. Huang. 2018. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmospheric Measurement Techniques 11(10):5673-5686. https://doi.org/10.5194/amt-11-5673-2018.

Varon, D. J., J. McKeever, D. Jervis, J. D. Maasakkers, S. Pandey, S. Houweling, I. Aben, T. Scarpelli, and D. J. Jacob. 2019. Satellite discovery of anomalously large methane point sources from oil/gas production. Geophysical Research Letters 46(22):13507-13516. https://doi.org/10.1029/2019GL083798.

Vaughn, T. L., C. S. Bell, C. K. Pickering, S. Schwietzke, G. A. Heath, G. Pétron, D. J. Zimmerle, R. C. Schnell, and D. Nummedal. 2018. Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proceedings of the National Academy of Sciences 115(46):11712-11717. https://doi.org/10.1073/pnas.1805687115.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Vechi, N. T., J. Mellqvist, and C. Scheutz. 2022. Quantification of methane emissions from cattle farms, using the tracer gas dispersion method. Agriculture, Ecosystems & Environment 330:107885. https://doi.org/10.1016/j.agee.2022.107885.

Velasco, E., M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford. 2013. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmospheric Chemistry and Physics 13(20):10185-10202. https://doi.org/10.5194/acp-13-10185-2013.

Velasco, E., M. Roth, L. Norford, and L. T. Molina. 2016. Does urban vegetation enhance carbon sequestration? Landscape and Urban Planning 148:99-107. https://doi.org/10.1016/j.landurbplan.2015.12.003.

Verhulst, K. R., A. Karion, J. Kim, P. K. Salameh, R. F. Keeling, S. Newman, J. Miller, C. Sloop, T. Pongetti, P. Rao, C. Wong, F. M. Hopkins, V. Yadav, R. F. Weiss, R. M. Duren, and C. E. Miller. 2017. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: Calibration, urban enhancements, and uncertainty estimates. Atmospheric Chemistry and Physics 17(13):8313-8341. https://doi.org/10.5194/acp-17-8313-2017.

Vollmer, M. K., J. Mühle, S. Henne, D. Young, M. Rigby, B. Mitrevski, S. Park, C. R. Lunder, T. S. Rhee, C. M. Harth, M. Hill, R. L. Langenfelds, M. Guillevic, P. M. Schlauri, O. Hermansen, J. Arduini, R. H. J. Wang, P. K. Salameh, M. Maione, P. B. Krummel, S. Reimann, S. O’Doherty, P. G. Simmonds, P. J. Fraser, R. G. Prinn, R. F. Weiss, and L. P. Steele. 2021. Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons. Proceedings of the National Academy of Sciences 118(5):e2010914118. https://doi.org/10.1073/pnas.2010914118.

von Fischer, J. C., D. Cooley, S. Chamberlain, A. Gaylord, C. J. Griebenow, S. P. Hamburg, J. Salo, R. Schumacher, D. Theobald, and J. Ham. 2017. Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environmental Science & Technology 51(7):4091-4099. https://doi.org/10.1021/acs.est.6b06095.

Wainstein, M. E. 2019. Open Climate. Leveraging blockchain for a global, transparent and integrated climate accounting system. Presented at Yale Open Innovation Lab: Openlab, New Haven, Connecticut. https://collabathon-docs.openclimate.earth/openclimate/docs-open-climate-platform.

Wang, H., C. Ma, and L. Zhou. 2009. A brief review of machine learning and its application. Presented at 2009 International Conference on Information Engineering and Computer Science, December 19-20.

Wang, F., S. Maksyutov, A. Tsuruta, R. Janardanan, A. Ito, M. Sasakawa, T. Machida, I. Morino, Y. Yoshida, J. W. Kaiser, G. Janssens-Maenhout, E. J. Dlugokencky, I. Mammarella, J. V. Lavric, and T. Matsunaga. 2019. Methane emission estimates by the Global High-Resolution Inverse Model using national inventories. Remote Sensing 11(21):2489.

Wang, Z., L. Lin, Y. Xu, H. Che, X. Zhang, H. Zhang, W. Dong, C. Wang, K. Gui, and B. Xie. 2021. Incorrect Asian aerosols affecting the attribution and projection of regional climate change in CMIP6 models. npj Climate and Atmospheric Science 4(1):2. https://doi.org/10.1038/s41612-020-00159-2.

Wang, J., W. Daniels, D. Hammerling, M. Harrison, K. Burmaster, F. George, and A. Ravikumar. 2022a. Multi-scale methane measurements at oil and gas facilities reveal necessary conditions for improved emissions accounting. ChemRxiv. https://doi.org/10.26434/chemrxiv-2022-9zh2v.

Wang, J., L. Feng, P. I. Palmer, Y. Liu, S. Fang, H. Bösch, C. W. O’Dell, X. Tang, D. Yang, L. Liu, and C. Xia. 2022b. Reply to: On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink. Nature 603(7901):E15-E16. https://doi.org/10.1038/s41586-021-04259-8.

Watts, M. 2017. Cities spearhead climate action. Nature Climate Change 7(8):537-538. https://doi.org/10.1038/nclimate3358.

Wei, T., J. Wu, and S. Chen. 2021. Keeping track of greenhouse gas emission reduction progress and targets in 167 cities worldwide. Frontiers in Sustainable Cities 3. https://doi.org/10.3389/frsc.2021.696381.

Weikmans, R., and A. Gupta. 2021. Assessing state compliance with multilateral climate transparency requirements: ‘Transparency Adherence Indices’ and their research and policy implications. Climate Policy 21(5):635-651. https://doi.org/10.1080/14693062.2021.1895705.

Weir, B., D. Crisp, C. W. O’Dell, S. Basu, A. Chatterjee, J. Kolassa, T. Oda, S. Pawson, B. Poulter, Z. Zhang, P. Ciais, S. J. Davis, Z. Liu, and L. E. Ott. 2021. Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Science Advances 7(45):eabf9415. https://doi.org/10.1126/sciadv.abf9415.

Weissert, L. F., J. A. Salmond, and L. Schwendenmann. 2017. Photosynthetic CO2 uptake and carbon sequestration potential of deciduous and evergreen tree species in an urban environment. Urban Ecosystems 20(3):663-674. https://doi.org/10.1007/s11252-016-0627-0.

Whetstone, J. R. 2018. Advances in urban greenhouse gas flux quantification: The Indianapolis Flux Experiment (INFLUX). Elementa: Science of the Anthropocene 6. https://doi.org/10.1525/elementa.282.

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3(1):160018. https://doi.org/10.1038/sdata.2016.18.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Wilson, D., and J. Swisher. 1993. Exploring the gap: Top-down versus bottom-up analyses of the cost of mitigating global warming. Energy Policy 21(3):249-263. https://doi.org/10.1016/0301-4215(93)90247-D.

WMO (World Meteorological Organization). 2021. Report on Unexpected Emissions of CFC-11: A Report of the Scientific Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer. Geneva, Switzerland: WMO. https://ozone.unep.org/system/files/documents/SAP-2021-report-on-the-unexpected-emissions-of-CFC-11-1268_en.pdf.

WMO/IAEA (International Atomic Energy Agency). 2013. 17th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2013). P. Tans and Christoph Zellweger, eds. https://www.uncclearn.org/wp-content/uploads/library/gaw_213_en.pdf.

WMO/IAEA. 2020. 20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2019). A. Crotwell, H. Lee and M. Steinbacher, eds. https://library.wmo.int/doc_num.php?explnum_id=10353.

Worden, J. R., D. H. Cusworth, Z. Qu, Y. Yin, Y. Zhang, A. A. Bloom, S. Ma, B. K. Byrne, T. Scarpelli, J. D. Maasakkers, D. Crisp, R. Duren, and D. J. Jacob. 2022. The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics 22(10):6811-6841. https://doi.org/10.5194/acp-22-6811-2022.

WRI (World Resources Institute). 2015. Guide for Designing Mandatory Greenhouse Gas Reporting Programs. Washington, DC: World Resources Institute. https://www.wri.org/research/guide-designing-mandatory-greenhouse-gas-reporting-programs.

WRI/WBCSD (World Business Council for Sustainable Development). 2004. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. Washington, DC: World Resource Institute. https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf.

WRI/WBCSD. 2011. Corporate Value Chain (Scope 3) Accounting and Reporting Standard. Supplement to the GHG Protocol Corporate Accounting and Reporting Standard. Geneva, Switzerland: Greenhouse Gas Protocol.

Wu, K., K. J. Davis, N. L. Miles, S. J. Richardson, T. Lauvaux, D. P. Sarmiento, N. V. Balashov, K. Keller, J. Turnbull, K. R. Gurney, J. Liang, and G. Roest. 2022. Source decomposition of eddy-covariance CO2 flux measurements for evaluating a high-resolution urban CO2 emissions inventory. Environmental Research Letters 17(7):074035. https://doi.org/10.1088/1748-9326/ac7c29.

Wuebbles, D., M. Gupta, and M. Ko. 2007. Evaluating the impacts of aviation on climate change. Eos, Transactions American Geophysical Union 88(14):157-160. https://doi.org/10.1029/2007EO140001.

Wunch, D., P. O. Wennberg, G. C. Toon, G. Keppel-Aleks, and Y. G. Yavin. 2009. Emissions of greenhouse gases from a North American megacity. Geophysical Research Letters 36(15). https://doi.org/10.1029/2009GL039825.

Xueref-Remy, I., P. Bousquet, C. Carouge, L. Rivier, and P. Ciais. 2011a. Variability and budget of CO2 in Europe: Analysis of the CAATER airborne campaigns – Part 2: Comparison of CO2 vertical variability and fluxes between observations and a modeling framework. Atmospheric Chemistry and Physics 11(12):5673-5684. https://doi.org/10.5194/acp-11-5673-2011.

Xueref-Remy, I., C. Messager, D. Filippi, M. Pastel, P. Nedelec, M. Ramonet, J. D. Paris, and P. Ciais. 2011b. Variability and budget of CO2 in Europe: Analysis of the CAATER airborne campaigns – Part 1: Observed variability. Atmospheric Chemistry and Physics 11(12):5655-5672. https://doi.org/10.5194/acp-11-5655-2011.

Xueref-Remy, I., E. Dieudonné, C. Vuillemin, M. Lopez, C. Lac, M. Schmidt, M. Delmotte, F. Chevallier, F. Ravetta, O. Perrussel, P. Ciais, F. M. Bréon, G. Broquet, M. Ramonet, T. G. Spain, and C. Ampe. 2018. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area. Atmospheric Chemistry and Physics 18(5):3335-3362. https://doi.org/10.5194/acp-18-3335-2018.

Xueref-Remy, I., G. Zazzeri, F. M. Bréon, F. Vogel, P. Ciais, D. Lowry, and E. G. Nisbet. 2020a. Anthropogenic methane plume detection from point sources in the Paris megacity area and characterization of their δ13C signature. Atmospheric Environment 222:117055. https://doi.org/10.1016/j.atmosenv.2019.117055.

Xueref-Remy, I., A. Riandet, L. Lelandais, B. Nathan, M. Milne, V. Masson, M.-L. Lambert, A. Armengaud, J. Turnbull, C. Yohia, A. Nicault, T. Lauvaux, J. Piazzola, C. Lac, T. Hedde, S. Robert, G. Simioni, W. Cramer, and A. Bondeau. 2020b. COoL-AMmetropolis: Towards establishing virtuous greenhouse gas emission mitigation scenarios for 2035 in the Aix-Marseille metropolis area (France) through atmospheric top-down technics and social sciences methods in interaction with local stakeholders. Presented at EGU General Assembly 2020. https://doi.org/10.5194/egusphere-egu2020-5930.

Yacovitch, T. I., S. C. Herndon, G. Pétron, J. Kofler, D. Lyon, M. S. Zahniser, and C. E. Kolb. 2015. Mobile laboratory observations of methane emissions in the Barnett Shale Region. Environmental Science & Technology 49(13):7889-7895. https://doi.org/10.1021/es506352j.

Yona, L., B. Cashore, R. B. Jackson, J. Ometto, and M. A. Bradford. 2020. Refining national greenhouse gas inventories. Ambio 49(10):1581-1586. https://doi.org/10.1007/s13280-019-01312-9.

Yona, L., B. Cashore, and M. A. Bradford. 2022. Factors influencing the development and implementation of national greenhouse gas inventory methodologies. Policy Design and Practice 5(2):197-225. https://doi.org/10.1080/25741292.2021.2020967.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

Yu, K., C. A. Keller, D. J. Jacob, A. M. Molod, S. D. Eastham, and M. S. Long. 2018. Errors and improvements in the use of archived meteorological data for chemical transport modeling: An analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology. Geoscientific Model Development 11(1):305-319. https://doi.org/10.5194/gmd-11-305-2018.

Yver-Kwok, C., C. Philippon, P. Bergamaschi, T. Biermann, F. Calzolari, H. Chen, S. Conil, P. Cristofanelli, M. Delmotte, J. Hatakka, M. Heliasz, O. Hermansen, K. Komínková, D. Kubistin, N. Kumps, O. Laurent, T. Laurila, I. Lehner, J. Levula, M. Lindauer, M. Lopez, I. Mammarella, G. Manca, P. Marklund, J. M. Metzger, M. Mölder, S. M. Platt, M. Ramonet, L. Rivier, B. Scheeren, M. K. Sha, P. Smith, M. Steinbacher, G. Vítková, and S. Wyss. 2021. Evaluation and optimization of ICOS atmosphere station data as part of the labeling process. Atmospheric Measurement Techniques 14(1):89-116. https://doi.org/10.5194/amt-14-89-2021.

Zavala-Araiza, D., S. C. Herndon, J. R. Roscioli, T. I. Yacovitch, M. R. Johnson, D. R. Tyner, M. Omara, and B. Knighton. 2018. Methane emissions from oil and gas production sites in Alberta, Canada. Elementa: Science of the Anthropocene 6. https://doi.org/10.1525/elementa.284.

Zazzeri, G., D. Lowry, R. E. Fisher, J. L. France, M. Lanoisellé, and E. G. Nisbet. 2015. Plume mapping and isotopic characterisation of anthropogenic methane sources. Atmospheric Environment 110:151-162. https://doi.org/10.1016/j.atmosenv.2015.03.029.

Zazzeri, G., X. Xu, and H. Graven. 2021. Efficient sampling of atmospheric methane for radiocarbon analysis and quantification of fossil methane. Environmental Science & Technology 55(13):8535-8541. https://doi.org/10.1021/acs.est.0c03300.

Zhang, Y., R. Gautam, S. Pandey, M. Omara, J. D. Maasakkers, P. Sadavarte, D. Lyon, H. Nesser, M. P. Sulprizio, D. J. Varon, R. Zhang, S. Houweling, D. Zavala-Araiza, R. A. Alvarez, A. Lorente, S. P. Hamburg, I. Aben, and D. J. Jacob. 2020. Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances 6(17):eaaz5120. https://doi.org/10.1126/sciadv.aaz5120.

Zhao, Y., K. Zhang, X. Xu, H. Shen, X. Zhu, Y. Zhang, Y. Hu, and G. Shen. 2020. Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in mainland China. Environmental Science & Technology Letters 7(6):402-408. https://doi.org/10.1021/acs.estlett.0c00304.

Zheng, B., G. Geng, P. Ciais, S. J. Davis, R. V. Martin, J. Meng, N. Wu, F. Chevallier, G. Broquet, F. Boersma, R. van der A, J. Lin, D. Guan, Y. Lei, K. He, and Q. Zhang. 2020. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Science Advances 6(49):eabd4998. https://doi.org/10.1126/sciadv.abd4998.

Zheng, B., Q. Zhang, G. Geng, C. Chen, Q. Shi, M. Cui, Y. Lei, and K. He. 2021. Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth System Science Data 13(6):2895-2907. https://doi.org/10.5194/essd-13-2895-2021.

Zhou, X., S. Yoon, S. Mara, M. Falk, T. Kuwayama, T. Tran, L. Cheadle, J. Nyarady, B. Croes, E. Scheehle, J. D. Herner, and A. Vijayan. 2021. Mobile sampling of methane emissions from natural gas well pads in California. Atmospheric Environment 244:117930. https://doi.org/10.1016/j.atmosenv.2020.117930.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 105
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 106
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 107
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 108
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 109
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 110
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 111
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 112
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 113
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 114
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 115
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 116
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 117
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 118
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 119
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 120
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 121
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 122
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 123
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 124
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 125
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 126
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 127
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 128
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 129
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 130
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 131
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward. Washington, DC: The National Academies Press. doi: 10.17226/26641.
×
Page 132
Next: Appendix A: Acronyms, Initialisms, and Glossary »
Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward Get This Book
×
Buy Paperback | $30.00 Buy Ebook | $24.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Climate change, driven by increases in human-produced greenhouse gases and particles (collectively referred to as GHGs), is the most serious environmental issue facing society. The need to reduce GHGs has become urgent as heat waves, heavy rain events, and other impacts of climate change have become more frequent and severe. Since the Paris Agreement was adopted in 2015, more than 136 countries, accounting for about 80% of total global GHG emissions, have committed to achieving net-zero emissions by 2050. A growing number of cities, regional governments, and industries have also made pledges to reduce emissions. Providing decision makers with useful, accurate, and trusted GHG emissions information is a crucial part of this effort.

This report examines existing and emerging approaches used to generate and evaluate GHG emissions information at global to local scales. The report develops a framework for evaluating GHG emissions information to support and guide policy makers about its use in decision making. The framework identifies six criteria or pillars that can be used to evaluate and improve GHG emissions information: usability and timeliness, information transparency, evaluation and validation, completeness, inclusivity, and communication. The report recommends creating a coordinated repository or clearinghouse to operationalize the six pillars, for example, by providing timely, transparent, traceable information; standardized data formats; and governance mechanisms that are coordinated, trusted, and inclusive of the global community.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!