National Academies Press: OpenBook
« Previous: 6 Essential Components of the Low-Dose Radiation Program
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

References

AAPM (American Association of Physicists in Medicine). (2021). AAPM/ACR/HPS Joint Statement on Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams. Policies and Procedures, PP 35-A. Alexandria, VA, American Association of Physicists in Medicine.

Aardema, M. J., and J. T. MacGregor. (2002). “Toxicology and genetic toxicology in the new era of “toxicogenomics”: Impact of “-omics” technologies.” Mutation Research 499(1): 13–25. doi: 10.1016/s0027-5107(01)00292-5.

Abalo, K. D., E. Rage, K. Leuraud, D. B. Richardson, H. D. Le Pointe, D. Laurier, and M. O. Bernier. (2021). “Early life ionizing radiation exposure and cancer risks: Systematic review and meta-analysis.” Pediatric Radiology 51(1): 45–56. doi: 10.1007/s00247-020-04803-0. Erratum, Pediatric Radiology 51: 157–158 (2021).

Aceves, W. J. (2018). “Cost-benefit analysis and human rights.” St. John’s Law Review 92(3): 431–451. https://scholarship.law.stjohns.edu/cgi/viewcontent.cgi?article=7079&context=lawreview.

Acharya, M. M., J. E. Baulch, A. A. D. Baddour, L. A. Apodaca, L. Alikhani, C. Garcia, M. C. Angulo, R. S. Batra, C. L. Limoli, P. M. Klein, I. Soltesz, E. A. Kramar, C. E. L. Stark, M. A. Wood, C. M. Fallgren, T. B. Borak, and R. A. Britten. (2019). “New concerns for neurocognitive function during deep space exposures to chronic, low dose-rate, neutron radiation.” eNeuro 6(5). doi: 10.1523/ENEURO.0094-19.2019.

ACS (American Cancer Society). (2020). Lifetime Risk of Developing or Dying from Cancer. Kennesaw, GA, American Cancer Society. https://www.cancer.org/cancer/cancer-basics/lifetime-probability-of-developing-or-dying-from-cancer.html.

Adhikari, S., E. C. Nice, E. W. Deutsch, L. Lane, G. S. Omenn, S. R. Pennington, Y. K. Paik, C. M. Overall, F. J. Corrales, I. M. Cristea, J. E. Van Eyk, M. Uhlén, C. Lindskog, D. W. Chan, A. Bairoch, J. C. Waddington, J. L. Justice, J. LaBaer, H. Rodriguez, F. He, M. Kostrzewa, P. Ping, R. L. Gundry, P. Stewart, S. Srivastava, S. Srivastava, F. C. S. Nogueira, G. B. Domont, Y. Vandenbrouck, M. P. Y. Lam, S. Wennersten, J. A. Vizcaino, M. Wilkins, J. M. Schwenk, E. Lundberg, N. Bandeira, G. Marko-Varga, S. T. Weintraub, C. Pineau, U. Kusebauch, R. L. Moritz, S. B. Ahn, M. Palmblad, M. P. Snyder, R. Aebersold, and M. S. Baker. (2020). “A high-stringency blueprint of the human proteome.” Nature Communications 11(1): 5301. doi: 10.1038/s41467-020-19045-9.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

AEC (Atomic Energy Commission). (1955). Atomic Test Effects in the Nevada Test Site Region. Washington, DC, U.S. Atomic Energy Commission.

Ahadi, S., W. Zhou, S. M. Schüssler-Fiorenza Rose, M. R. Sailani, K. Contrepois, M. Avina, M. Ashland, A. Brunet, and M. Snyder. (2020). “Personal aging markers and ageotypes revealed by deep longitudinal profiling.” Nature Medicine 26(1): 83–90. doi: 10.1038/s41591-019-0719-5.

Ahn, Y.-S., R. M. Park, and D.-H. Koh. (2008). “Cancer admission and mortality in workers exposed to ionizing radiation in Korea.” Journal of Occupational and Environmental Medicine 50(7): 791–803. doi: 10.1097/JOM.0b013e318167751d.

Ainsbury, E. A., C. Dalke, N. Hamada, M. A. Benadjaoud, J. R. Jourdain, V. Chumak, M. Ginjaume, J. L. Kok, M. Mancuso, L. Sabatier, L. Struelens, and J. Thariat. (2021). “Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy.” Environment International 146: 06213. doi: 10.1016/j.envint.2020.106213.

Ainsbury, E. A., C. Dalke, M. Mancuso, M. Kadhim, R. A. Quinlan, T. Azizova, L. T. Dauer, J. R. Dynlacht, R. Tanner, and N. Hamada. (2022). “Introduction to the special LDLensRad focus issue. Radiation Research 197(1): 1–6. doi: 10.1667/RADE-21-00188.1.

AIP (American Institute of Physics). (2021). Academies Panel to Consider Future of Revived DOE Low-Dose Radiation Program. August 12. https://www.aip.org/fyi/2022/academies-panel-consider-future-revived-doe-low-dose-radiation-program.

Ajmal, S. (2021). “Contrast-enhanced ultrasonography: Review and applications.” Cureus 13(9): e18243. doi: 10.7759/cureus.18243.

Akiba, S., and S. Mizuno. (2012). “The third analysis of cancer mortality among Japanese nuclear workers, 1991–2002: Estimation of excess relative risk per radiation dose.” Journal of Radiological Protection 32(1): 73–83. doi: 10.1088/0952-4746/32/1/73.

Alexandrov, L. B., J. Kim, N. J. Haradhvala, M. N. Huang, A. W. Tian Ng, Y. Wu, A. Boot, K. R. Covington, D. A. Gordenin, E. N. Bergstrom, S. M. A. Islam, N. Lopez-Bigas, L. J. Klimczak, J. R. McPherson, S. Morganella, R. Sabarinathan, D. A. Wheeler, and V. Mustonen; PCAWG Mutational Signatures Working Group, G. Getz, S. G. Rozen, and M. R. Stratton; PCAWG Consortium. (2020). “The repertoire of mutational signatures in human cancer.” Nature 578(7793): 94–101. doi: 10.1038/s41586-020-1943-3.

Ali, S. S. (2019). “Frantic parents fear for kids after radioactive contamination found at Ohio middle school.” NBC News, May 15. https://www.nbcnews.com/news/us-news/frantic-parents-fear-kids-after-radioactive-contamination-found-ohio-middle-n1005771.

Allisy-Roberts, P., and P. Day. (2008). “Uncertainty evaluation and expression in dose and risk assessment.” Journal of Radiological Protection 28(3): 265–269. doi: 10.1088/0952-4746/28/3/E02.

Almond, D., L. Edlund, and M. Palme. (2009). “Chernobyl’s subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden.” Quarterly Journal of Economics 124(4): 1729–1772. doi: 10.1162/qjec.2009.124.4.1729.

Amano, M. A., B. French, R. Sakata, M. Dekker, and A. V. Brenner. (2021). “Lifetime risk of suicide among survivors of the atomic bombings of Japan.” Epidemiology and Psychiatric Sciences 30: e43. doi: 10.1017/S204579602100024X.

Amdur, R. J., and J. S. Bedford. (1994). “Dose-rate effects between 0.3 and 30 Gy/h in a normal and a malignant human cell line.” International Journal of Radiation Oncology, Biology, Physics 30(1): 83–90. doi: 10.1016/0360-3016(94)90522-3.

Andersen, P. K., R. B. Geskus, T. de Witte, and H. Putter. (2012). “Competing risks in epidemiology: Possibilities and pitfalls.” International Journal of Epidemiology 41(3): 861–870. doi: 10.1093/ije/dyr213.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Anderson, J. L., S. J. Bertke, J. Yiin, K. Kelly-Reif, and R. D. Daniels. (2021). “Ischaemic heart and cerebrovascular disease mortality in uranium enrichment workers.” Occupational and Environmental Medicine 78(2): 105–111. doi: 10.1136/oemed-2020-106423.

Ando, K., Y. Muguruma, and T. Yahata. (2008). “Humanizing bone marrow in immune-deficient mice.” Current Topics in Microbiology and Immunology 324: 77–86. doi: 10.1007/978-3-540-75647-7_4.

ANS (American Nuclear Society). (2017). ANS Nuclear Grand Challenges. http://cdn.ans.org/challenges/docs/nuclear_grand_challenges-report.pdf?_ga=2.171724192.1606616436.1643651604-1471315233.1613263563.

ANS. (2022). Risks of Exposure to Low-Level Ionizing Radiation. https://cdn.ans.org/policy/statements/docs/ps41-bi.pdf?_ga=2.185895085.564315287.1643141575-1468864878.1643141575.

Applegate, K. E., W. Rühm, A. Wojcik, M. Bourguignon, A. Brenner, K. Hamasaki, T. Imai, M. Imaizumi, T. Imaoka, S. Kakinuma, T. Kamada, N. Nishimura, N. Okonogi, K. Ozasa, C. E. Rübe, A. Sadakane, R. Sakata, Y. Shimada, K. Yoshida, and S. Bouffler. (2020). “Individual response of humans to ionising radiation: Governing factors and importance for radiological protection.” Radiation and Environmental Biophysics 59: 185–209. doi: 10.1007/s00411-020-00837-y.

Applegate, K. E., Ú. Findlay, L. Fraser, Y. Kinsella, L. Ainsbury, and S. Bouffler. (2021). “Radiation exposures in pregnancy, health effects and risks to the embryo/foetus—information to inform the medical management of the pregnant patient.” Journal of Radiological Protection 41(4). doi: 10.1088/1361-6498/ac1c95.

Armstrong, G. T., N. Jain, W. Liu, T. E. Merchant, M. Stovall, D. K. Srivastava, J. G. Gurney, R. J. Packer, L. L. Robison, and K. R. Krull. (2010). “Region-specific radiotherapy and neuropsychological outcomes in adult survivors of childhood CNS malignancies.” Neuro-Oncology 12: 1173–1186. doi: 10.1093/neuonc/noq104.

Auxier, J. P., J. D. Auxier II, and H. L. Hall. (2017). “Review of current nuclear fallout codes.” Journal of Environmental Radioactivity 171: 246–252. doi: 10.1016/j. jenvrad.2017.02.010.

Averbeck, D., S. Candéias, S. Chandna, N. Foray, A. A. Friedl, S. Haghdoost, P. A. Jeggo, K. Lumniczky, F. Paris, R. Quintens, and L. Sabatier. (2020). “Establishing mechanisms affecting the individual response to ionizing radiation.” International Journal of Radiation Biology 96(3): 297–323. doi: 10.1080/09553002.2019.1704908.

Azizova, T. V., E. Batistatou, E. S. Grigorieva, R. McNamee, R. Wakeford, H. Liu, F. de Vocht, and R. M. Agius. (2018). “An assessment of radiation-associated risks of mortality from circulatory disease in the cohorts of Mayak and Sellafield nuclear workers.” Radiation Research 189(4): 371–388. doi: 10.1667/RR14468.1.

Azizova, T. V., M. V. Bannikova, E. S. Grigoryeva, V. L. Rybkina, and N. Hamada. (2020). “Occupational exposure to chronic ionizing radiation increases risk of Parkinson’s disease incidence in Russian Mayak workers.” International Journal of Epidemiology 49(2): 435–447. https://doi.org/10.1093/ije/dyz230.

Batkins, S. (2016). “The costs and benefits of nuclear regulation.” American Action Forum. September 8. https://www.americanactionforum.org/research/costs-benefits-nuclear-regulation.

Batkins, S., P. Rossetti, and P. Goldbeck. (2017). “Putting nuclear regulatory costs in context.” American Action Forum. https://www.americanactionforum.org/research/putting-nuclear-regulatory-costs-context.

Bazyka, D., K. Loganovsky, I. Ilyenko, S. Chumak, and M. Bomko. (2015). “Gene expression, telomere and cognitive deficit analysis as a function of Chornobyl radiation dose and age: From in utero to adulthood.” Problems of Radiation Medicine and Radiobiology 20: 283–310.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Bedford, J. S. (2001). “The radiobiology of low-dose-rate and fractionated irradiation.” In Principles and Practice of Brachytherapy: Using Afterloading Systems (A. Flynn, E. J. Hall, and C. A. F. Joslin, eds.), pp. 161–179. New York, Arnold.

Bedford, J. S., and W. C. Dewey. (2002). “Historical and current highlights in radiation biology: Has anything important been learned by irradiating cells?” Radiation Research 158(3): 251–291. doi: 10.1667/0033-7587(2002)158[0251:hachir]2.0.co;2.

Behjati, S., G. Gundem, D. C. Wedge, N. D. Roberts, P. S. Tarpey, S. L. Cooke, P. Van Loo, L. B. Alexandrov, M. Ramakrishna, H. Davies, S. Nik-Zainal, C. Hardy, C. Latimer, K. M. Raine, L. Stebbings, A. Menzies, D. Jones, R. Shepherd, A. P. Butler, J. W. Teague, M. Jorgensen, B. Khatri, N. Pillay, A. Shlien, P. A. Futreal, C. Badie, U. McDermott, G. S. Bova, A. L. Richardson, A. M. Flanagan, M. R. Stratton, P. J. Campbell, and ICGC Prostate Group. (2016). “Mutational signatures of ionizing radiation in second malignancies.” Nature Communications 7: 12605. doi: 10.1038/ncomms12605.

Bene, B. J., W. F. Blakely, D.M. Burmeister, L. Cary, S. J. Chhetri, C. M. Davis, S. P. Ghosh, G. P. Holmes-Hampton, S. Iordanskiy, J. F. Kalinich, J. G. Kiang, V. P. Kumar, R. J. Lowy, A. Miller, M. Naeem, D. A. Schauer, L. Senchak, V. K. Singh, A. J. Stewart, E. M. Velazquez, and M. Xiao. (2021). “Celebrating 60 years of accomplishments of the Armed Forces Radiobiology Research Institute.” Radiation Research 196(2): 129–146. doi: 10.1667/21-00064.1.

Bennett, D. A., D. Landry, J. Little, and C. Minelli. (2017). “Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.” BMC Medical Research Methodology 17(1): 146.

BERAC (Biological and Environmental Research Advisory Committee). (2016). Letter and Final Report. Low-Dose Radiation Expert Subcommittee, Biological and Environmental Research Advisory Committee, U.S. Department of Energy. https://science.osti.gov/-/media/ber/berac/pdf/charges/Low_Dose_letter_and_BERAC_report.pdf?la=en&hash=7BA54E931244BFA12829490B1636555D2C2FBD25.

Berlivet, J., D. Hémon, É. Cléro, G. Ielsch, D. Laurier, S. Guissou, B. Lacour, J. Clavel, and S. Goujon. (2020). “Ecological association between residential natural background radiation exposure and the incidence rate of childhood central nervous system tumors in France, 2000–2012.” Journal of Environmental Radioactivity 211: 106071. doi: 10.1016/j.jenvrad.2019.106071.

Bernier, M. O., H. Baysson, M. S. Pearce, M. Moissonnier, E. Cardis, M. Hauptmann, L. Struelens, J. Dabin, C. Johansen, N. Journy, D. Laurier, M. Blettner, L. Le Cornet, R. Pokora, P. Gradowska, J. M. Meulepas, K. Kjaerheim, T. Istad, H. Olerud, A. Sovik, M. Bosch de Basea, I. Thierry-Chef, M. Kaijser, A. Nordenskjöld, A. Berrington de Gonzalez, R. W. Harbron, and A. Kesminiene. (2019). “Cohort Profile: The EPI-CT study: A European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT.” International Journal of Epidemiology 48(2): 379–381. doi: 10.1093/ije/dyy231.

Bernstein, B. E., J. A. Stamatoyannopoulos, J. F. Costello, B. Ren, A. Milosavljevic, A. Meissner, M. Kellis, M. A. Marra, A. L. Beaudet, J. R. Ecker, P. J. Farnham, M. Hirst, E. S. Lander, T. S. Mikkelsen, and J. A. Thomson. (2010). “The NIH Roadmap Epigenomics Mapping Consortium.” Nature Biotechnology 28(10): 1045–1048. doi: 10.1038/nbt1010-1045.

Berrington de González, A., A. Bouville, P. Rajaraman, and M. Schubauer-Berigan. (2017). “Ionizing radiation.” Chap. 13 in Cancer Epidemiology and Prevention (M. Thun, M. S. Linet, J. R. Cerhan, C. A. Haiman, and D. Schottenfeld, eds.). Oxford University Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Berrington de González, A., R. D. Daniels, E. Cardis, H. M. Cullings, E. Gilbert, M. Hauptmann, G. Kendall, D. Laurier, M. S. Linet, M. P. Little, J. H. Lubin, D. L. Preston, D. B. Richardson, D. Stram, I. Thierry-Chef, and M. K. Schubauer-Berigan. (2020). “Epidemiological studies of low-dose ionizing radiation and cancer: Rationale and framework for the monograph and overview of eligible studies.” Journal of the National Cancer Institute Monographs 56: 97–113. doi: 10.1093/jncimonographs/lgaa009.

Berrington de González, A., E. Pasqual, and L. Veiga. (2021). “Epidemiological studies of CT scans and cancer risk: The state of the science. British Journal of Radiology 94(1126): 20210471. doi: 10.1259/bjr.20210471.

Bhawal, R., A. L. Oberg, S. Zhang, and M. Kohli. (2020). “Challenges and opportunities in clinical applications of blood-based proteomics in cancer.” Cancers (Basel) 12(9): 2428. doi: 10.3390/cancers12092428.

Bigbee, W. L., R. H. Jensen, T. Veidebaum, M. Tekkel, M. Rahu, A. Stengrevics, A. Auvinen, T. Hakulinen, K. Servomaa, T. Rytömaa, G. I. Obrams, and J. D. Boice, Jr. (1997). “Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay.” Radiation Research 147(2): 215–224.

Bissell, M. J., and W. C. Hines. (2011). “Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression.” Nature Medicine 17(3): 320–329. doi: 10.1038/nm.2328.

Bixler, N., and A. Nosek. (2021). MACCS Theory Manual. No. SAND2021-11535. Sandia National Laboratory, Albuquerque, NM.

Black, S. E., A. Butikofer, P. J. Devereux, and K. G. Salvanes. (2019). “This is only a test? Long-run and intergenerational impacts of prenatal exposure to radioactive fallout.” Review of Economics and Statistics 101(3): 531–546.

Black, S., D. Phillips, J. W. Hickey, J. Kennedy-Darling, V. G. Venkataraaman, N. Samusik, Y. Goltsev, C. M. Schürch, and G. P. Nolan. (2021). “CODEX multiplexed tissue imaging with DNA-conjugated antibodies.” Nature Protocols 16(8): 3802–3835. doi: 10.1038/s41596-021-00556-8.

Bleesing, J. J., M. R. Brown, C. Novicio, D. Guarraia, J. K. Dale, S. E. Straus, and T. A. Fleisher. (2002). “A composite picture of TcR α/β+ CD4-CD8- T Cells (α/β-DNTCs) in humans with autoimmune lymphoproliferative syndrome.” Clinical Immunology 104(1): 21–30. doi: 10.1006/clim.2002.5225.

Blettner, M., H. Zeeb, A. Auvinen, T. J. Ballard, M. Caldora, H. Eliasch, M. Gundestrup, T. Haldorsen, N. Hammar, G. P. Hammer, D. Irvine, I. Langner, A. Paridou, E. Pukkala, V. Rafnsson, H. Storm, H. Tulinius, U. Tveten, and A. Tzonou. (2003). “Mortality from cancer and other causes among male airline cockpit crew in Europe.” International Journal of Cancer 106(6): 946–952. doi: 10.1093/aje/kwg107.

Blomstrand, M., E. Holmberg, M. A. Aberg, M. Lundell, T. Björk-Eriksson, P. Karlsson, and K. Blomgren. (2014). “No clinically relevant effect on cognitive outcomes after low-dose radiation to the infant brain: A population-based cohort study in Sweden.” Acta Oncologica 53(9): 1143–1150. doi: 10.3109/0284186X.2014.899434.

Blush, S. M., and T. H. Heitman. (1995). Train Wreck Along the River of Money: An Evaluation of the Hanford Cleanup, a Report for the U.S. Senate Committee on Energy and Natural Resources. Washington, DC, U.S. Government Printing Office.

Boerma, M., C. M. Davis, I. L. Jackson, D. Schaue, and J. P. Williams. (2022). “All for one, though not one for all: Team players in normal tissue radiobiology.” International Journal of Radiation Biology 98(3): 346–366. doi: 10.1080/09553002.2021.1941383.

Boice, J. D., Jr., and R. W. Miller. (1999). “Childhood and adult cancer after intrauterine exposure to ionizing radiation.” Teratology 59(4): 227–233. doi: 10.1002/(SICI)1096-9926(199904)59:4<227::AID-TERA7>3.0.CO;2-E.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Boice, J. D., Jr., S. S. Cohen, M. T. Mumma, E. D. Ellis, K. F. Eckerman, R. W. Leggett, B. B. Boecker, A. B. Brill, and B. E. Henderson. (2011). “Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948–2008.” Radiation Research 176(2): 244–258. https://doi.org/10.1667/RR2487.1.

Boice, J. D., Jr., S. S. Cohen, M. T. Mumma, S. C. Howard, R. C. Yoder, and L. T. Dauer. (2021). “Mortality among medical radiation workers in the United States, 1965-2016.” International Journal of Radiation Biology (Nov 3): 1–63. doi: 10.1080/09553002.2021.1967508.

Boice, J. D., Jr., A. Bouville, L. T. Dauer, A. P. Golden, and R. Wakeford. (2022a). “Introduction to the special issue on the US Million Person Study of health effects from low-level exposure to radiation.” International Journal of Radiation Biology 98(4): 529–532. doi: 10.1080/09553002.2021.1989906.

Boice, J. D., Jr., S. S. Cohen, M. T. Mumma, and E. D. Ellis. (2022b). “The Million Person Study, whence it came and why.” International Journal of Radiation Biology 98(4):537–550. doi: 10.1080/09553002.2019.1589015.

Boice, J. D., Jr., E. D. Ellis, A. P. Golden, L. B. Zablotska, M. T. Mumma, and S. S. Cohen. (2022c). “Sex-specific lung cancer risk among radiation workers in the Million Person Study and among TB fluoroscopy patients.” International Journal of Radiation Biology 98(4): 769–780. doi: 10.1080/09553002.2018.1547441.

Borak, T. B., L. H. Heilbronn, N. Krumland, and M. M. Weil. (2021). “Design and dosimetry of a facility to study health effects following exposures to fission neutrons at low-dose rates for long durations.” International Journal of Radiation Biology 97(8): 1063–1076. doi: 10.1080/09553002.2019.1688884.

Brackmann, L. K., A. Poplawski, C. L. Grandt, H. Schwarz, T. Hankeln, S. Rapp, S. Zahnreich, D. Galetzka, I. Schmitt, C. Grad, L. Eckhard, J. Mirsch, M. Blettner, P. Scholz-Kreisel, M. Hess, H. Binder, H. Schmidberger, and M. Marron. (2020). “Comparison of time and dose dependent gene expression and affected pathways in primary human fibroblasts after exposure to ionizing radiation. Molecular Medicine 26(1): 85. doi: 10.1186/s10020-020-00203-0.

Brambilla, M., J. Vassileva, A. Kuchcinska, and M. M. Rehani. (2020). “Multinational data on cumulative radiation exposure of patients from recurrent radiological procedures: Call for action.” European Radiology 30(5): 2493–2501. doi: 10.1007/s00330-019-06528-7.

Brenner, A. V., D. L. Preston, R. Sakata, H. Sugiyama, A. Berrington de Gonzalez, B. French, M. Utada, E. K. Cahoon, A. Sadakane, K. Ozasa, E. J. Grant, and K. Mabuchi. (2018). “Incidence of breast cancer in the Life Span Study of Atomic Bomb Survivors: 1958–2009.” Radiation Research 190(4): 433–444. doi: 10.1667/RR15015.1.

Brenner, A. V., H. Sugiyama, D. L. Preston, R. Sakata, B. French, A. Sadakane, E. K. Cahoon, M. Utada, K. Mabuchi, and K. Ozasa. (2020). “Radiation risk of central nervous system tumors in the Life Span Study of Atomic Bomb Survivors, 1958–2009.” European Journal of Epidemiology 35(6): 591–600. doi: 10.1007/s10654-019-00599-y.

Brenner, A. V., D. L. Preston, R. Sakata, J. Cologne, H. Sugiyama, M. Utada, E. K. Cahoon, E. Grant, K. Mabuchi, and K. Ozasa. (2022). “Comparison of all solid cancer mortality and incidence dose-response in the Life Span Study of Atomic Bomb Survivors, 1958–2009.” Radiation Research. doi: 10.1667/RADE-21-00059.1.

Brenner, D. J. (2014). “What we know and what we don’t know about cancer risks associated with radiation doses from radiological imaging.” British Journal of Radiology 87(1035): 20130629. doi: 10.1259/bjr.20130629.

Brenner, D. J., R. Doll, D. T. Goodhead, E. J. Hall, C. E. Land, J. B. Little, J. H. Lubin, D. L. Preston, R. J. Preston, J. S. Puskin, E. Ron, R. K. Sachs, J. M. Samet, R. B. Setlow, and M. Zaider. (2003). “Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know.” Proceedings of the National Academy of Sciences of the United States of America 100(24): 13761–13766. doi: 10.1073/pnas.2235592100.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Brodeur, G. M., K. E. Nichols, S. E. Plon, J. D. Schiffman, and D. Malkin. (2017). “Pediatric cancer predisposition and surveillance: An overview, and a tribute to Alfred G. Knudson Jr.” Clinical Cancer Research 23(11): e1–e5. doi: 10.1158/1078-0432.CCR-17-0702.

Brooks, A. L. (2012). A History of the United States Department of Energy (DOE) Low-dose Radiation Research Program: 1998–2008. https://web.archive.org/web/20150906124027/http://lowdose.energy.gov/pdf/albRoughDraft/doeHistoryComplete09262012.pdf.

Bromet, E. J. (2011). “Lessons learned from radiation disasters.” World Psychiatry 10: 83–84. doi: 10.1002/j.2051-5545.2011.tb00020.x.

Bromet, E. J. (2012). “Mental health consequences of the Chernobyl disaster.” Journal of Radiological Protection 32: N71-5. doi: 10.1088/0952-4746/32/1/N71.

Bromet, E. J. (2014). “Emotional consequences of nuclear power plant disasters.” Health Physics 106(2): 206–210. doi: 10.1097/HP.0000000000000012.

Bromet, E., and L. Litcher-Kelly. (2002). “Psychological response of mothers of young children to the Three Mile Island and Chernobyl nuclear plant accidents one decade later.” In Toxic Turmoil (J. Havenaar, J. Cwikel, and E. Bromets, eds.), pp. 69–84. Springer.

Budgen, M. (2021). “Return to Fukushima, 10 years later,” Lifegate, March 11. https://www.lifegate.com/fukushima-10-years.

Burger, J., M. Gochfeld, and K. Pletnikoff. (2009). “Collaboration versus communication: The Department of Energy’s Amchitka Island and the Aleut Community.” Environmental Research 109(4): 503–510. doi: 10.1016/j.envres.2009.01.002.

Bushnell, D. M. (2020). Space Tourism. NASA Technical Reports Server, National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20205005651?utm_source=FBPAGE&utm_medium=NASA%20Scientific%20and%20Technical%20Information%20(STI)%20Program&utm_campaign=NASASocial&linkId=109243812.

Cahoon, E. K., D. L. Preston, D. A. Pierce, E. Grant, A. V. Brenner, K. Mabuchi, M. Utada, and K. Ozasa. (2017). “Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: An updated analysis from 1958 through 2009.” Radiation Research 187(5): 538–548. doi: 10.1667/RR14583.1.

Cahoon, E. K., R. Zhang, S. L. Simon, R. M. Pfeiffer, and A. Bouville. (2021). “Projected cancer risks to residents of New Mexico from exposure to trinity radioactive fallout: Erratum.” Health Physics 120(1): 94–97. doi: 10.1097/01.HP.0000725236.16225.17.

Caldwell, G. G., D. B. Kelley, and C. W. Heath, Jr. (1980). “Leukemia among participants in military maneuvers at a nuclear bomb test. A preliminary report.” Journal of the American Medical Association 244(14): 1575–1578. doi: 10.1001/jama.1980.03310140033025.

Campisi, J., J. K. Andersen, P. Kapahi, and S. Melov. (2011). “Cellular senescence: A link between cancer and age-related degenerative disease?” Seminars in Cancer Biology 21(6): 354–359. doi: 10.1016/j.semcancer.2011.09.001.

Cardarelli, J. J., II, and B. A. Ulsh. (2018). “It is time to move beyond the linear no-threshold theory for low-dose radiation protection.” Dose-Response 16(3). doi: 10.1177/1559325818779651.

Carey, M. P. (2014). Cost-Benefit and Other Analysis Requirements in the Rulemaking Process. Washington, DC, Congressional Research Service.

Castillo, H., X. Li, and G. B. Smith. (2021). “Deinococcus radiodurans UWO298 dependence on background radiation for optimal growth.” Frontiers in Genetics 12: 644292. doi: 10.3389/fgene.2021.644292.

CDC (Centers for Disease Control and Prevention) (2020). Radiation Response Briefing Manual: A Guide for Key Leaders and Public Health Decision Makers. Centers for Disease Control and Prevention.

Chakraborty, N., A. Gautam, G. P. Holmes-Hampton, V. P. Kumar, S. Biswas, R. Kumar, D. Hamad, G. Dimitrov, A. O. Olabisi, R. Hammamieh, and S. P. Ghosh. (2020). “microRNA and metabolite signatures linked to early consequences of lethal radiation.” Scientific Reports 10(1): 5424. doi: 10.1038/s41598-020-62255-w.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Chaves, M., and H. de Jong. (2021). “Qualitative modeling, analysis and control of synthetic regulatory circuits.” In Synthetic Gene Circuits, Vol. 2229: Methods in Molecular Biology (F. Menolascina, ed.), pp. 1–40. Humana, New York. doi: 10.1007/978-1-0716-1032-9_1.

Cheminfo Services Inc. (2012). Review of the Rare Earth Elements and Lithium Mining Sectors: Final Report, Cheminfo Services Inc.

Chen, J.-H., Y.-C. Yen, S.-H. Liu, F.-P. Lee, K.-C. Lin, M.-T. Lai, C.-C. Wu, T.-M. Chen, S.-P. Yuan, C.-L. Chang, and S.-Y. Wu. (2015). “Dementia risk in irradiated patients with head and neck cancer.” Medicine (Baltimore) 94(45): e1983. doi: 10.1097/MD.0000000000001983.

Cheng, E. S., S. Egger, S. Hughes, M. Weber, J. Steinberg, B. Rahman, H. Worth, A. Ruano-Ravina, P. Rawstorne, and X. Q. Yu. (2021). “Systematic review and meta-analysis of residential radon and lung cancer in never-smokers.” European Respiratory Review 30(159): 200230. doi: 10.1183/16000617.0230-2020.

Choudhury, P., and M. Gupta. (2017). “Personalized and precision medicine in cancer: A theranostic approach.” Current Radiopharmaceuticals 10(3): 166–170. doi: 10.2174/1 874471010666170728094008.

Chua, E. Y. D., J. H. Mendez, M. Rapp, S. L. Ilca, Y. Zi Tan, K. Maruthi, H. Kuang, C. M. Zimanyi, A. Cheng, E. T. Eng, A. J. Noble, C. S. Potter, and B. Carragher. (2022). “Better, faster, cheaper: Recent advances in cryo-electron microscopy.” Annual Review of Biochemistry. doi: 10.1146/annurev-biochem-032620-110705.

Clement, C., W. Rühm, J. Harrison, K. Applegate, D. Cool, C. M. Larsson, C. Cousins, J. Lo-chard, S. Bouffler, K. Cho, M. Kai, D. Laurier, S. Liu, and S. Romanov. (2021). “Keeping the ICRP recommendations fit for purpose.” Journal of Radiological Protection 41(4): 1390–1409. doi: 10.1088/1361-6498/ac1611.

Clewell, R. A., C. M. Thompson, and H. J. Clewell, III. (2019). “Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment.” Chemico-Biological Interactions 301: 112–127. doi: 10.1016/j.cbi.2019.01.025.

Cochran, L. D., A. C. Eckert, B. Hunt, and T. Kraus. (2020). “Uncertainty analysis of consequence management data products.” Health Physics 118(4): 382–395.

Cohen, B. (1987). Reducing the Hazards of Nuclear Power: Insanity in Action. Bethesda, MD, Atomic Industrial Forum, Public Affairs and Information Program.

Collaborative Cross Consortium. (2012). “The genome architecture of the Collaborative Cross mouse genetic reference population.” Genetics 190(2): 389–401. doi: 10.1534/genetics.111.132639.

Collins, F. S., and A. D. Barker. (2007). “Mapping the cancer genome: Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies.” Scientific American 296(3): 50–57.

COMARE (Committee on Medical Aspects of Radiation in the Environment). (2016). Seventeenth Report: Further Consideration of the Incidence of Cancers Around the Nuclear Installations at Sellafield and Dounreay. Wetherby, UK, COMARE. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/554981/COMARE_17th_Report.pdf.

Commission on Risk Assessment and Risk Management. (1997). Symposium on a Public Health Approach to Environmental Health Risk Management, 8 August 1997, Washington, DC. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&count=10000&dirEntryId=55006&searchall=&showcriteria=2&simplesearch=0&timstype=.

Complex Trait Consortium. (2004). “The Collaborative Cross, a community resource for the genetic analysis of complex traits.” Nature Genetics 36(11): 1133–1137. doi: 10.1038/ng1104-1133.

Cone, M. (1997). “Desert lands contaminated by toxic spills.” Los Angeles Times. April 24. https://www.latimes.com/archives/la-xpm-1997-04-24-mn-51903-story.html.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Cook-Deegan, R. M. (1994). The Gene Wars: Science, Politics, and the Human Genome. New York, Norton.

Coskun, A. F., G. Han, S. Ganesh, S. Y. Chen, X. R. Clavé, S. Harmsen, S. Jiang, C. M. Schürch, Y. Bai, C. Hitzman, and G. P. Nolan. (2021). “Nanoscopic subcellular imaging enabled by ion beam tomography.” Nature Communications 12(1): 789. doi: 10.1038/s41467-020-20753-5.

Court-Brown, W. M., and R. Doll. (1957). Leukaemia and Aplastic Anaemia in Patients Irradiated for Ankylosing Spondylitis, Vol. 295: Medical Research Council Special Report Series. London, Her Majesty’s Stationery Office.

Cremer, P., R. Hachamovitch, and B. Tamarappoo. (2014). “Clinical decision making with myocardial perfusion imaging in patients with known or suspected coronary artery disease.” Seminars in Nuclear Medicine 44(4): 320–329. doi: 10.1053/j.semnuclmed.2014.04.006.

Cullings, H. M., S. Fujita, S. Funamoto, E. J. Grant, G. D. Kerr, and D. L. Preston. (2006). “Dose estimation for atomic bomb survivor studies: Its evolution and present status.” Radiation Research 166(1 Pt. 2): 219–254. doi: 10.1667/RR3546.1.

Cullings, H. M., E. J. Grant, S. D. Egbert, T. Watanabe, T. Oda, F. Nakamura, T. Yamashita, H. Fuchi, S. Funamoto, K. Marumo, R. Sakata, Y. Kodama, K. Ozasa, and K. Kodama. (2017). “DS02R1: Improvements to atomic bomb survivors’ input data and implementation of Dosimetry System 2002 (DS02) and resulting changes in estimated doses.” Health Physics 112(1): 56–97. doi: 10.1097/HP.0000000000000598.

Cuttler, J. M., and M. Pollycove. (2009). “Nuclear energy and health: And the benefits of low-dose radiation hormesis.” Dose-Response 7(1): 52–89. doi: 10.2203/dose-response.08-024.Cuttler.

Daniels, R. D., G. M. Kendall, I. Thierry-Chef, M. S. Linet, and H. M. Cullings. (2020). “Strengths and weaknesses of dosimetry used in studies of low-dose radiation exposure and cancer.” Journal of the National Cancer Institute 2020(56): 114–132. doi: 10.1093/jncimonographs/lgaa001.

Danzer, M., and N. Danzer. 2016. “The long-run consequences of Chernobyl: Evidence on subjective well-being, mental health, and welfare.” Journal of Public Economics 135: 47–60. doi: 10.1016/j.jpubeco.2016.01.001.

Darby, S., D. Hill, A. Auvinen, J. M. Barros-Dios, H. Baysson, F. Bochicchio, H. Deo, R. Falk, F. Forastiere, M. Hakama, I. Heid, L. Kreienbrock, M. Kreuzer, F. Lagarde, I. Mäkeläinen, C. Muirhead, W. Oberaigner, G. Pershagen, A. Ruano-Ravina, E. Ruosteenoja, A. S. Rosario, M. Tirmarche, L. Tomáýek, E. Whitley, H. E. Wichmann, and R. Doll. (2005). “Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies.” British Medical Journal 330(7485): 223–226. doi: 10.1136/bmj.38308.477650.63.

Datta, R., T. M. Heaster, J. T. Sharick, A. A. Gillette, and M. C. Skala. (2020). “Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications.” Journal of Biomedical Optics 25(7): 1–43. doi: 10.1117/1. JBO.25.7.071203.

Dauer, L. T., N. Hamada, and E. A. Blakely. (2017). “National Council on Radiation Protection and Measurements Commentary Number 26: Impact of revised guidance on radiation protection for the lens of the eye.” Journal of the American College of Radiology 14(7): 980–982. doi: 10.1016/j.jacr.2017.05.003.

Davis, S., K. J. Kopecky, and T. Hamilton. (2002). Hanford Thyroid Disease Study: Final report. Seattle, Fred Hutchinson Cancer Research Center.

Dawson, S. E. (1992). “Navajo uranium workers and the effects of occupational illnesses: A case study.” Human Organization 51(4): 389–397. doi: 10.17730/humo.51.4.e02484g513501t35.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Dawson, T. M., T. E. Golde, and C. Lagier-Tourenne. (2018). “Animal models of neurodegenerative diseases.” Nature Neuroscience 21: 1370–1379. doi: 10.1038/s41593-018-0236-8.

Denkinger, M. D., H. Leins, R. Schirmbeck, M. C. Florian, and H. Geiger. (2015). “HSC aging and senescent immune remodeling.” Trends in Immunology 36(12): 815–824. doi: 10.1016/j.it.2015.10.008.

Dhingra, R., and R. S. Vasan. (2017). “Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers.” Trends in Cardiovascular Medicine 27(2): 123–133. doi: 10.1016/j.tcm.2016.07.005.

DHS (Department of Homeland Security). (2016). Nuclear/Radiological Incident Annex to the Response and Recovery Federal Interagency Operational Plans. Washington, DC, Department of Homeland Security. https://www.fema.gov/sites/default/files/2020-07/fema_incident-annex_nuclear-radiological.pdf.

DiCarlo, A. L., A. C. Bandremer, B. A. Hollingsworth, S. Kasim, A. Laniyonu, N. F. Todd, S.-J. Wang, E. R. Wertheimer, and C. I. Rios. (2020). “Cutaneous radiation injuries: Models, assessment and treatments.” Radiation Research 194(3): 315–344. doi: 10.1667/RADE-20-00120.1.

Dindaoğlu, T. (2014). “The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover.” Journal of Environmental Health Science and Engineering 12(1): 130. doi: 10.1186/s40201-014-0130-6.

Dobrzyński, L., K. W. Fornalski, and L. E. Feinendegen. (2015). “Cancer mortality among people living in areas with various levels of natural background radiation.” Dose-Response 13(3): 1–10. doi: 10.1177/1559325815592391.

DOE (Department of Energy). (2020a). Report on the Status of the Runit Dome in the Marshall Islands: Report to Congress. https://www.energy.gov/sites/prod/files/2020/06/f76/DOE-Runit-Dome-Report-to-Congress.pdf.

DOE. (2020b). U.S. Department of Energy Announces $160 Million in First Awards Under Advanced Reactor Demonstration Program. https://www.energy.gov/ne/articles/us-department-energy-announces-160-million-first-awards-under-advanced-reactor.

DOE. (2021a). Biological Systems Science Division Strategic Plan. Washington, DC, DOE/SC-0205. U.S. Department of Energy Office of Science. https://science.osti.gov/-/media/ber/pdf/bssd/BSSD_Strategic_Plan_2021_HR.pdf.

DOE. (2021b). Science/Biological and Environmental Research FY 2022 Congressional Budget Request: Science. Washington, DC, Department of Energy. https://www.energy.gov/sites/default/files/2021-06/03%20BER%20Program%20Narrative%206_16_21.pdf.

DOE and EPA (Environmental Protection Agency). (1995). Policy on Decommissioning Department of Energy Facilities Under CERCLA. https://www.etec.energy.gov/Library/Main/1995DOE-EPAD&DMemo.pdf.

DOE EHHS Openness. (1995). Human Radiation Experiments: Oral Histories. https://ehss.energy.gov/ohre/roadmap/histories/0457/0457toc.html.

Doll, R., and R. Wakeford. (1997). “Risk of childhood cancer from fetal irradiation.” British Journal of Radiology 70(830): 130–139. doi: 10.1259/bjr.70.830.9135438.

Donaubauer, A. J., I. Becker, T. Weissmann, B. M. Fröhlich, L. E. Muñoz, T. Gryc, M. Denzler, O. J. Ott, R. Fietkau, U. S. Gaipl, and B. Frey. (2021). “Low dose radiation therapy induces long-lasting reduction of pain and immune modulations in the peripheral blood—Interim analysis of the IMMO-LDRT01 Trial.” Frontiers in Immunology 12: 740742. doi: 10.3389/fimmu.2021.740742. Erratum, Frontiers in Immunology 13: 859489 (2022). doi: 10.3389/fimmu.2022.859489.

DOT (Department of Transportation). (2021). Departmental Guidance on Valuation of a Statistical Life in Economic Analysis. Transportation Policy. https://www.transportation.gov/office-policy/transportation-policy/revised-departmental-guidance-on-valuation-of-a-statistical-life-in-economic-analysis.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Doudna, J. A. (2020). “The promise and challenge of therapeutic genome editing.” Nature 578: 229–236. doi: 10.1038/s41586-020-1978-5.

Dron, L., A. Dillman, M. J. Zoratti, J. Haggstrom, E. J. Mills, and J. J. H. Park. (2021). “Clinical trial data sharing for COVID-19-related research.” Journal of Medical Internet Research 23(3): e26718. doi: 10.2196/26718.

Duyx, B., M. J. E. Urlings, G. H. M. Swaen, L. M. Bouter, and M. P. Zeegers. (2017). “Scientific citations favor positive results: A systematic review and meta-analysis.” Journal of Clinical Epidemiology 88: 92–101. doi: 10.1016/j.jclinepi.2017.06.002.

Dwivedi, R., D. Mehrotra, and S. Chandra. (2022). “Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review.” Journal of Oral Biology and Craniofacial Research 12(2): 302–318. doi: 10.1016/j. jobcr.2021.11.010.

Ellis, M. J., and C. M. Perou. (2013). “The genomic landscape of breast cancer as a therapeutic roadmap.” Cancer Discovery 3(1): 27–34. doi: 10.1158/2159-8290.CD-12-0462.

Ellis, M. J., M. Gillette, S. A. Carr, A. G. Paulovich, R. D. Smith, K. K. Rodland, R. R. Townsend, C. Kinsinger, M. Mesri, H. Rodriguez, D. C. Liebler, and Clinical Proteomic Tumor Analysis Consortium. (2013). “Connecting genomic alterations to cancer biology with proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium.” Cancer Discovery 3(10): 1108–1112. doi: 10.1158/2159-8290.CD-13-0219.

Elmaraezy, A., M. Ebraheem Morra, A. Tarek Mohammed, A. Al-Habaa, A. Elgebaly, A. Abdelmotaleb Ghazy, A. M. Khalil, N. Tien Huy, and K. Hirayama. (2017). “Risk of cataract among interventional cardiologists and catheterization lab staff: A systematic review and meta-analysis.” Catheterization and Cardiovascular Interventions 90(1): 1–9. doi: 10.1002/ccd.27114.

EPA (Environmental Protection Agency). (1999). “Radon in drinking water health risk reduction and cost analysis.” Federal Register 64: 9560–9599. https://www.govinfo.gov/content/pkg/FR-1999-02-26/pdf/99-4416.pdf.

EPA. (2003). EPA Assessment of Risks from Radon in Homes. Washington, DC, Office of Air and Radiation, Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-05/documents/402-r-03-003.pdf.

EPA. (2008). Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining, Vol. 1: Mining and Reclamation Background, and Vol. 2, Investigation of Potential Health, Geographic, and Environmental Issues of Abandoned Uranium Mines. https://nepis.epa.gov/Exe/ZyPDF.cgi/9100I3Y4.PDF?Dockey=9100I3Y4.PDF.

EPA. (2010). Guidelines for Preparing Economic Analyses. Washington, DC, Environmental Protection Agency. https://www.epa.gov/environmental-economics/guidelines-preparing-economic-analyses.

EPA. (2014). Distribution of the “Radiation Risk Assessment at CERCLA Sites: Q&A.” https://nepis.epa.gov/Exe/ZyPDF.cgi/P100K3TC.PDF?Dockey=P100K3TC.PDF.

EPA. (2017). PAG Manual: Protective Action Guides and Planning Guidance for Radiological Incidents. Washington, DC, Office of Radiation and Indoor Air, Radiation Protection Division, Environmental Protection Agency. https://www.epa.gov/sites/default/files/2017-01/documents/epa_pag_manual_final_revisions_01-11-2017_cover_disclaimer_8.pdf.

EPA. (2018a). Home Buyer’s and Seller’s Guide to Radon. https://www.epa.gov/sites/default/files/2015-05/documents/hmbuygud.pdf.

EPA. (2018b). Working Together: FY 2018–2022 U.S. EPA Strategic Plan. Washington, DC, Office of Planning, Analysis, and Accountability, Office of the Chief Financial Officer, Environmental Protection Agency. https://www.epa.gov/sites/default/files/2018-02/documents/fy-2018-2022-epa-strategic-plan.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

EPA. (2021). Notification of Evaluation: Process for Updating Federal Radiation Policies and Guidance Project No. OSRE-FY21-0208. https://www.epa.gov/system/files/documents/2021-07/_epaoig_notificationmemo_7-8-21_radiation.pdf.

EPA. (2022). Hotline: EPA Is Taking Steps to Update Its Federal Radiation Guidance Report No. 22-E-0016. https://www.epa.gov/system/files/documents/2022-01/_epaoig_20220106-22-e-0016.pdf.

EPRI (Electric Power Research Institute). (2011). Technical Considerations for NRC/National Academy Proposed Study of Cancer Risks in Populations Living Near Nuclear Facilities. Palo Alto, CA, Electric Power Research Institute.

EPRI. (2014). Epidemiology and Mechanistic Effects of Radiation on the Lens of the Eye: Review and Scientific Appraisal of the Literature. Palo Alto, CA, Electric Power Research Institute.

EPRI. (2020). Cardiovascular Risks from Low-Dose Radiation Exposure: Review and Scientific Appraisal of the Literature. Palo Alto, CA, Electric Power Research Institute.

FAA (Federal Aviation Administration). 2003. What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation. https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/0316.pdf.

Fantuzzi, E., M.-A. Chevallier, R. Cruz-Suarez, M. Luszik-Bhadra, S. Mayer, D. J. Thomas, R. Tanner, and F. Vanhavere. (2014). “EURADOS Intercomparison 2012 for Neutron Dosemeters.” EURADOS Report 2014-02. Braunschweig, Germany, European Radiation Dosimetry Group. doi: 10.12768/kfkq-g944.

FDA (Food and Drug Administration). (1977). Chemical Compounds in Food Producing Animals: Criteria and Procedures for Evaluating Assays for Carcinogenic Residues in Edible Products of Animals. Federal Register 42: 10,412.

FDA. (1998). Mammography Quality Standards Act (MQSA) (As Amended by MQSRA of 1998 and 2004), Title 42—The Public Health and Welfare, Chapter 6A—Public Health Service, Subchapter II—General Powers and Duties, Part F—Licensing of Biological Products and Clinical, Laboratories, Subpart 3—Mammography Facilities. https://www.fda.gov/media/74251/download.

Feinberg, A. P., M. A. Koldobskiy, and A. Göndör. (2016). “Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.” Nature Reviews Genetics 17(5): 284–299. doi: 10.1038/nrg.2016.13.

Fernandez-Antoran, D., G. Piedrafita, K. Murai, S. H. Ong, A. Herms, C. Frezza, and P. H. Jones. (2019). “Outcompeting p53-mutant cells in the normal esophagus by redox manipulation.” Cell Stem Cell 25(3): 329–341. doi: 10.1016/j.stem.2019.06.011.

Field, R. W., D. J. Steck, B. J. Smith, C. P. Brus, E. L. Fisher, J. S. Neuberger, C. E. Platz, R. A. Robinson, R. F. Woolson, and C. F. Lynch. (2000). “Residential radon gas exposure and lung cancer: The Iowa Radon Lung Cancer Study.” American Journal of Epidemiology 151(11): 1091–1102. doi: 10.1093/oxfordjournals.aje.a010153.

Fischhoff, B., and A. L. Davis. (2014). “Communicating scientific uncertainty.” Proceedings of the National Academy of Sciences of the United States of America 111: 13664–13671. doi: 10.1073/pnas.1317504111.

Fischhoff, B., and D. A. Scheufele. (2013). “The science of science communication: Introduction.” Proceedings of the National Academy of Sciences of the United States of America 110(Suppl. 3): 14031–14032. doi: 10.1073/pnas.1312080110.

Fischhoff, B., and D. A. Scheufele. (2014). “The science of science communication II.” Proceedings of the National Academy of Sciences of the United States of America 111(Suppl. 4): 13583–13584. doi: 10.1073/pnas.1414635111.

Fisher, D. R. (2021). “Perspectives on internal dosimetry for optimized radionuclide therapy.” Cancer Biotherapy and Radiopharmaceuticals 37(3). doi: 10.1089/cbr.2021.0318.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Foox, J., J. Nordlund, C. Lalancette, T. Gong, M. Lacey, S. Lent, B. W. Langhorst, V. K. C. Ponnaluri, L. Williams, K. R. Padmanabhan, R. Cavalcante, A. Lundmark, D. Butler, C. Mozsary, J. Gurvitch, J. M. Greally, M. Suzuki, M. Menor, M. Nasu, A. Alonso, C. Sheridan, A. Scherer, S. Bruinsma, G. Golda, A. Muszynska, P. P. Łabaj, M. A. Campbell, F. Wos, A. Raine, U. Liljedahl, T. Axelsson, C. Wang, Z. Chen, Z. Yang, J. Li, X. Yang, H. Wang, A. Melnick, S. Guo, A. Blume, V. Franke, I. Ibanez de Caceres, C. RodriguezAntolin, R. Rosas, J. W. Davis, J. Ishii, D. B. Megherbi, W. Xiao, W. Liao, J. Xu, H. Hong, B. Ning, W. Tong, A. Akalin, Y. Wang, Y. Deng, and C. E. Mason. (2021). “The SEQC2 epigenomics quality control (EpiQC) study. Genome Biology 22(1): 332. doi: 10.1186/s13059-021-02529-2. Erratum, Genome Biology 22(1): 3502021 (2021). doi: 10.1186/s13059-021-02573-y.

Fournier, L., O. Laurent, E. Samson, S. Caër-Lorho, P. Laroche, B. Le Guen, D. Laurier, and K. Leuraud. (2016). “External radiation dose and cancer mortality among French nuclear workers: Considering potential confounding by internal radiation exposure.” International Archives of Occupational and Environmental Health 89(8): 1183–1191. doi: 10.1007/s00420-016-1152-4.

FPG (Fukushima Prefectural Government). 2021. Fukushima Today: Steps for Reconstruction and Revitalization in Fukushima Prefecture. http://www.pref.fukushima.lg.jp/site/portal-english/ayumi-en-15.html.

Franceschi, C., R. Ostan, S. Mariotti, D. Monti, and G. Vitale. (2019). “The aging thyroid: A reappraisal within the geroscience integrated perspective.” Endocrine Reviews 40(5): 1250–1270. doi: 10.1210/er.2018-00170.

Fulop, T., J. M. Witkowski, F. Olivieri, and A. Larbi (2018). “The integration of inflammaging in age-related diseases.” Seminars in Immunology 40: 17–35. doi: 10.1016/j. smim.2018.09.003.

Fulwyler, M. J. (1965). “Electronic separation of biological cells by volume.” Science 150(3698): 910–911. doi: 10.1126/science.150.3698.910.

Fulwyler, M. J. (1980). “Flow cytometry and cell sorting.” Blood Cells 6(2): 173–184. PMID: 6155162.

GAO (Government Accountability Office). (1994). Report to the Chairman, Committee on Governmental Affairs, U.S. Senate—Nuclear Health and Safety: Consensus on Acceptable Radiation Risk to the Public Is Lacking. Washington, DC, General Accounting Office. https://www.gao.gov/assets/rced-94-190.pdf.

GAO. (2000). Radiation Standards: Scientific Basis Inconclusive, and EPA and NRC Disagreement Continues. https://www.gao.gov/products/rced-00-152.

GAO. (2017). Low-Dose Radiation: Interagency Collaboration on Planning Research Could Improve Information on Health Effects. https://www.gao.gov/assets/gao-17-546.pdf.

GAO. (2019). Department of Energy: Program-wide Strategy and Better Reporting Needed to Address Growing Environmental Cleanup Liability. Washington, DC, U.S. Government Publishing Office. https://www.gao.gov/assets/gao-19-28.pdf.

GAO. (2021). Department of Energy: Environmental Liability Continues to Grow, But Opportunities May Exist to Reduce Costs and Risks. https://www.gao.gov/assets/gao-21-585r.pdf.

Garnett, R. (2020). “A comprehensive review of dual-energy and multi-spectral computed tomography.” Clinical Imaging 67: 160–169. doi: 10.1016/j.clinimag.2020.07.030.

Garty, G., Y. Xu, G. W. Johnson, L. B. Smilenov, S. K. Joseph, M. Pujol-Canadell, H. C. Turner, S. A. Ghandhi, Q. Wang, R. Shih, R. C. Morton, D. E. Cuniberti, S. R. Morton, C. Bueno-Beti, T. L. Morgan, P. F. Caracappa, E. C. Laiakis, A. J. Fornace, Jr., S. A. Amundson, and D. J. Brenner. (2020). “VADER: A variable dose-rate external 137Cs irradiator for internal emitter and low dose rate studies.” Scientific Reports 10(1): 19899. doi: 10.1038/s41598-020-76941-2.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Garty, G., R. Obaid, N. Deoli, E. Royba, A. D. Harken, and D. J. Brenner. (2022). “FLASH irradiator at the Radiological Research Accelerator Facility.” Scientific Reports. Available at https://www.researchsquare.com/article/rs-1281287/v1.

Geiger H. J. (1992). Dead Reckoning: A Critical Review of the Department of Energy’s Epidemiologic Research. Washington, DC, Physicians for Social Responsibility.

Gessel, M. M., J. L. Norris, and R. M. Caprioli. (2014). “MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery.” Journal of Proteomics 107: 71–82. doi: 10.1016/j.jprot.2014.03.021.

Gibbs, R. A. (2020). “The Human Genome Project changed everything.” Nature Reviews Genetics 21: 575–576. doi: 10.1038/s41576-020-0275-3.

Gilbert, E. S., M. P. Little, D. L. Preston, and D. O. Stram. (2020). “Issues in interpreting epidemiologic studies of populations exposed to low-dose, high-energy photon radiation.” JNCI Monographs 2020(56): 176–187. doi: 10.1093/jncimonographs/lgaa004.

Gillies, M., D. B. Richardson, E. Cardis, R. D. Daniels, J. A. O’Hagan, R. Haylock, D. Laurier, K. Leuraud, M. Moissonnier, M. K. Schubauer-Berigan, I. Thierry-Chef, and A. Kesminiene. (2017). “Mortality from circulatory diseases and other non-cancer outcomes among nuclear workers in France, the United Kingdom and the United States (INWORKS).” Radiation Research 188(3): 276–290. doi: 10.1667/RR14608.1.

Glionna, J. M. (2012). “A year after tsunami, a cloud of distrust hangs over Japan.” Los Angeles Times, March 11.

Goecks, J., V. Jalili, L. M. Heiser, and J. W. Gray. (2020). “How machine learning will transform biomedicine.” Cell 181(1): 92–101. doi: 10.1016/j.cell.2020.03.022.

Goldstein, B. D., M. Demak, M. Northridge, and D. Wartenberg. (1992). “Risk to groundlings of death due to airplane accidents: A risk communication tool.” Risk Analysis 12(3): 339–341. doi: 10.1111/j.1539-6924.1992.tb00685.x.

Goldstein, B. D., C. Powers, J. Moore, and E. Faustman. (1999). “CRESP: A new approach to stakeholder-responsive, cost-effective research.” European Journal of Oncology 4(5): 537–541.

Gomolka, M., B. Blyth, M. Bourguignon, C. Badie, A. Schmitz, C. Talbot, C. Hoeschen, and S. Salomaa. (2020). “Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state.” International Journal of Radiation Biology 96(3): 280–296. doi: 10.1080/09553002.2019.1642544.

Graham, J. D. (2021). The Global Rise of the Modern Plug-in Electric Vehicle: Public Policy, Innovation and Strategy. Northampton, MA, Edward Elgar.

Graham, J. D., L. Green, and M. J. Roberts. (1988). In Search of Safety: Chemicals and Cancer Risk. Cambridge, MA, Harvard University Press.

Graham, J. D. E., J. B. E. Wiener, E. Hatziandreu, C. Williams, M. E. Adams, H. Chang, H. S. Frazier, P. D. Anderson, S. W. Putnam, K. Walker, and G. M. Gray. (1995). Risk vs. Risk: Tradeoffs in Protecting Health and the Environment. Cambridge, MA, Harvard University Press.

Grajewski, B., E. A. Whelan, C. C. Lawson, M. J. Hein, M. A. Waters, J. L. Anderson, L. A. MacDonald, C. J. Mertens, C. Y. Tseng, R. T. Cassinelli II, and L. Luo. (2015). “Miscarriage among flight attendants.” Epidemiology 26(2): 192–203. doi: 10.1097/EDE.0000000000000225.

Grajewski, B., L. C. Yong, S. J. Bertke, P. Bhatti, M. P. Little, M. J. Ramsey, J. D. Tucker, E. M. Ward, E. A. Whelan, A. J. Sigurdson, and M. A. Waters. (2018). “Chromosome translocations and cosmic radiation dose in male U.S. commercial airline pilots.” Aerospace Medicine and Human Performance 89(7): 616–625. doi: 10.3357/AMHP.4502.2018.

Grant, E. J., K. Furukawa, R. Sakata, H. Sugiyama, A. Sadakane, I. Takahashi, M. Utada, Y. Shimizu, and K. Ozasa. (2015). “Risk of death among children of atomic bomb survivors after 62 years of follow-up: A cohort study.” The Lancet: Oncology 16(13): 1316–1323. doi: 10.1016/S1470-2045(15)00209-0.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchi, and K. Ozasa. (2017). “Solid cancer incidence among the Life Span Study of atomic bomb survivors: 1958–2009.” Radiation Research 187(5): 513–537. doi: 10.1667/RR14492.1.

Grant, E. J., M. Yamamura, A. V. Brenner, D. L. Preston, M. Utada, H. Sugiyama, R. Sakata, K. Mabuchi, and K. Ozasa. (2020). “Radiation risks for the incidence of kidney, bladder and other urinary tract cancers: 1958–2009.” Radiation Research 195(2): 140–148. doi: 10.1667/RADE-20-00158.1.

Gray, J. W., P. N. Dean, J. C. Fuscoe, D. C. Peters, B. J. Trask, G. J. van den Engh, and M. A. Van Dilla. (1987). “High-speed chromosome sorting.” Science 238(4825): 323–329. doi: 10.1126/science.2443974. PMID: 2443974.

Gray, J. W., J. N. Lucas, D. Pinkel, and A. Awa. (1992). “Structural chromosome analysis by whole chromosome painting for assessment of radiation-induced genetic damage.” Journal of Radiation Research 33(Suppl.): 80–86. doi: 10.1269/jrr.33.supplement_80.

Greco, L., G. Percannella, P. Ritrovato, F. Tortorella, and M. Vento. (2020). “Trends in IoT based solutions for health care: Moving AI to the edge.” Pattern Recognition Letters 135: 346–353. doi: 10.1016/j.patrec.2020.05.016.

Grilj, V., M. Buonanno, D. Welch, and D. J. Brenner. (2020). “Proton irradiation platforms for preclinical studies of high-dose-rate (FLASH) effects at RARAF.” Radiation Research 194(6): 646–655.

Grosche, B., M. Kreuzer, M. Kreisheimer, M. Schnelzer, and A. Tschense. (2006). “Lung cancer risk among German male uranium miners: A cohort study, 1946–1998.” British Journal of Cancer 95(9): 1280–1277. https://doi.org/10.1038/sj.bjc.6603403.

Gross, C. (2021). Estimate of EEOICPA Liabilities. https://www.dol.gov/sites/dolgov/files/owcp/energy/regs/compliance/public_reading_room/actuarial_report_fy21.pdf. Gross Consulting.

Gudzenko, N., K. Mabuchi, A. V. Brenner, M. P. Little, M. Hatch, V. Drozdovitch, V. Vij, V. Chumak, E. Bakhanova, N. Trotsyuk, V. Kryuchkov, I. Golovanov, D. Bazyka, and E. K. Cahoon. (2022). “Risk of thyroid cancer in Ukrainian cleanup workers following the Chornobyl accident.” European Journal of Epidemiology 37(1): 67–77. doi: 10.1007/s10654-021-00822-9.

Gupta, K., M. C. Nowlin, J. T. Ripberger, H. C. Jenkins-Smith, and C. L. Silva. (2019). “Tracking the nuclear “mood” in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data.” Energy Policy 133: 110888. doi: 10.1016/j.enpol.2019.110888.

Haerer, H. A., M. D. Freshley, R. O. Gilbert, L. G. Morgan, B. A. Napier, R. E. Rhoads, and R. K. Woodruff. (1989). The Hanford Environmental Dose Reconstruction Project: Overview. https://www.osti.gov/servlets/purl/5478757.

Hamada, N., M. Maeda, K. Otsuka, and M. Tomita. (2011). “Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.” Current Molecular Pharmacology 4: 79–95. doi: 10.2174/1874467211104020079.

Hamada, N., T. V. Azizova, and M. P. Little. (2020). “An update on effects of ionizing radiation exposure on the eye.” British Journal of Radiology 93(1115): 20190829. doi: 10.1259/bjr.20190829.

Hammer, G. P., M. Blettner, and H. Zeeb. (2009). “Epidemiological studies of cancer in aircrew.” Radiation Protection Dosimetry 136(4): 232–239. doi: 10.1093/rpd/ncp125.

Hampel, H., A. Vergallo, F. Caraci, A. C. Cuello, P. Lemercier, B. Vellas, K. V. Giudici, F. Baldacci, B. Hänisch, M. Haberkamp, K. Broich, R. Nisticò, E. Emanuele, F. Llavero, J. L. Zugaza, A. Lucía, E. Giacobini, and S. Lista; Alzheimer Precision Medicine Initiative. (2021). “Future avenues for Alzheimer’s disease detection and therapy: Liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery.” Neuropharmacology 185: 108081. doi: 10.1016/j.neuropharm.2020.108081.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Hanahan, D. (2022). “Hallmarks of cancer: New dimensions.” Cancer Discovery 12(1): 31–46. doi: 10.1158/2159-8290.CD-21-1059.

Hanahan, D., and R. A. Weinberg. (2011). “Hallmarks of cancer: The next generation.” Cell 144(5): 646–674. doi: 10.1016/j.cell.2011.02.013.

Hansson, O. (2021). “Biomarkers for neurodegenerative diseases.” Nature Medicine 27(6): 954–963. doi: 10.1038/s41591-021-01382-x.

Harding, S. M., J. L. Benci, J. Irianto, D. E. Discher, A. J. Minn, and R. A. Greenberg. (2017). “Mitotic progression following DNA damage enables pattern recognition within micronuclei.” Nature 548(7668): 466–470. doi: 10.1038/nature23470.

Härtlova, A., S. F. Erttmann, F. A. Raffi, A. M. Schmalz, U. Resch, S. Anugula, S. Lienenklaus, L. M. Nilsson, A. Kröger, J. A. Nilsson, T. Ek, S. Weiss, and N. O. Gekara. (2015). “DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity.” Immunity 42(2): 332–343. doi: 10.1016/j. immuni.2015.01.012. PMID: 25692705.

Hauptmann, M., R. D. Daniels, E. Cardis, H. M. Cullings, G. M. Kendall, D. Laurier, M. S. Linet, M. P. Little, J. H. Lubin, D. L. Preston, D. B. Richardson, D. O. Stram, I. Thierry-Chef, M. K. Schubauer-Berigan, E. S. Gilbert, and A. Berrington de Gonzalez. (2020). “Epidemiological studies of low-dose ionizing radiation and cancer: Summary bias assessment and meta-analysis.” Journal of the National Cancer Institute Monographs 2020(56): 188–200. doi: 10.1093/jncimonographs/lgaa010.

Hayashi, T., H. E. Lynch, S. Geyer, K. Yoshida, K. Furudoi, K. Sasaki, Y. Morishita, H. Nagamura, M. Maki, Y. Hu, I. Hayashi, S. Kyoizumi, Y. Kusunoki, W. Ohishi, S. Fujiwara, M. Misumi, I. Shterev, J. Nikolich-Žugich, D. Murasko, L. P. Hale, G. D. Sempowski, and K. Nakachi. (2018). “Impact of early life exposure to ionizing radiation on influenza vaccine response in an elderly Japanese cohort.” Vaccine 36(45): 6650–6659. doi: 10.1016/j.vaccine.2018.09.054.

Hayata, I., C. Wang, W. Zhang, D. Chen, M. Minamihisamatsu, H. Morishima, L. Wei, and T. Sugahara. (2004). “Effect of high-level natural radiation on chromosomes of residents in southern China.” Cytogenetic and Genome Research 104(1–4): 237–239. doi: 10.1159/000077496.

Haylock, R. G. E., M. Gillies, N. Hunter, W. Zhang, and M. Phillipson. (2018). “Cancer mortality and incidence following external occupational radiation exposure: An update of the 3rd analysis of the UK national registry for radiation workers.” British Journal of Cancer 119: 631–637. doi: 10.1038/s41416-018-0184-9.

Heeb, C. M., S. P. Gydesen, J. C. Simpson, and D. J. Bates. (1996). “Reconstruction of radionuclide releases from the Hanford Site, 1944–1972.” Health Physics 71(4): 545–555. doi: 10.1097/00004032-199610000-00012.

Heinävaara, S., S. Toikkanen, K. Pasanen, P. K. Verkasalo, P. Kurttio, and A. Auvinen (2010). “Cancer incidence in the vicinity of Finnish nuclear power plants: An emphasis on childhood leukemia.” Cancer Causes and Control 21(4): 587–595. doi: 10.1007/s10552-009-9488-7.

Hendry, J. H., M. Sohrabi, W. Burkart, S. L. Simon, A. Wojcik, E. Cardis, D. Laurier, M. Tirmarche, and I. Hayata. (2009). “Human exposure to high natural background radiation: What can it teach us about radiation risks?” Journal of Radiological Protection 29(2): A29–A42. doi: 10.1088/0952-4746/29/2A/S03.

Herzenberg, L. A., R. G. Sweet, and L. A. Herzenberg. (1976). “Fluorescence-activated cell sorting.” Scientific American 234(3): 108–117. doi: 10.1038/scientificamerican0376-108.

HHS (Department of Health and Human Services). (2016). Guidelines for Regulatory Impact Analysis. Washington, DC, Department of Health and Human Services.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Hladik, D., and S. Tapio. (2016). “Effects of ionizing radiation on the mammalian brain.” Mutation Research: Reviews in Mutation Research 770(Pt. B): 219–230. doi: 10.1016/j. mrrev.2016.08.003.

Hoadley, K. A., C. Yau, T. Hinoue, D. M. Wolf, A. J. Lazar, E. Drill, R. Shen, A. M. Taylor, A. D. Cherniack, V. Thorsson, R. Akbani, R. Bowlby, C. K. Wong, M. Wiznerowicz, F. Sanchez-Vega, A. G. Robertson, B. G. Schneider, M. S. Lawrence, H. Noushmehr, and T. M. Malta, Cancer Genome Atlas Network; J. M. Stuart, C. C. Benz, and P. W. Laird. (2018). “Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer.” Cell 173(2): 291–304. doi: 10.1016/j.cell.2018.03.022.

Hoffman, F. O., A. I. Apostoae, and B. A. Thomas. (2001). “A perspective on public concerns about exposure to fallout from the production and testing of nuclear weapons.” Presented at 2001 Annual Meeting of the National Council on Radiation Protection and Measurements. https://www3.nd.edu/~kshrader/interest/NCRP.pdf.

Holaday, D. A., and H. N. Doyle. (1964). “Environmental studies in the uranium mines.” Radiological Health and Safety in Mining and Milling of Nuclear Materials (Vienna, 26–31 Aug. 1963), Proceeding Series—International Atomic Energy Agency, pp. 9–20. Vienna, Austria, International Atomic Energy Agency.

Hornhardt, S., M. Gomolka, L. Walsh, and T. Jung. (2006). “Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line.” Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis 600(1): 165–176. doi: 10.1016/j.mrfmmm.2006.04.002.

Howell, E. (2021). “Space tourism took a giant leap in 2021: Here’s 10 milestones from the year.” https://www.space.com/space-tourism-giant-leap-2021-milestones.

HPA (Health Protection Agency). (2010). Circulatory Disease Risk Report of the Independent Advisory Group on Ionising Radiation. https://eprints.whiterose.ac.uk/86824/1/RCE-16_for_web.pdf.

HPS (Health Physics Society). (2021). Report of the Health Physics Society Research Needs Task Force. Herndon, VA, Health Physics Society.

Hu, A. E., B. French, R. Sakata, P. Bhatti, B. Bockwoldt, E. J. Grant, and A. I. Phipps. (2021). “The possible impact of passive smoke exposure on radiation-related risk estimates for lung cancer among women: The Life Span Study of Atomic Bomb Survivors.” International Journal of Radiatiation Biology 97(11): 1548–1554. doi: 10.1080/09553002.2021.1976863.

Huang, C., Y. R. Neupane, X. C. Lim, R. Shekhani, B. Czarny, M. G. Wacker, G. Pastorin, and J. W. Wang. (2021). “Extracellular vesicles in cardiovascular disease.” Advances in Clinical Chemistry 103: 47–95. doi: 10.1016/bs.acc.2020.08.006.

Huang, Q., F. Li, X. Liu, W. Li, W. Shi, F. F. Liu, B. O’Sullivan, Z. He, Y. Peng, A. C. Tan, L. Zhou, J. Shen, G. Han, X. J. Wang, J. Thorburn, A. Thorburn, A. Jimeno, D. Raben, J. S. Bedford, and C. Y. Li. (2011). “Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy.” Nature Medicine 17(7): 860–866. doi: 10.1038/nm.2385.

Huang, Y. F., K. Aoki, S. Akase, M. Ishihara, Y. S. Liu, G. Yang, Y. Kizuka, S. Mizumoto, M. Tiemeyer, X. D. Gao, K. F. Aoki-Kinoshita, and M. Fujita. (2021). “Global mapping of glycosylation pathways in human-derived cells.” Developmental Cell 56(8): 1195–1209. doi: 10.1016/j.devcel.2021.02.023.

HuBMAP Consortium. (2019). “The human body at cellular resolution: The NIH Human Biomolecular Atlas Program.” Nature 574(7777): 187–192. doi: 10.1038/s41586-019-1629-x.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Hussmann, J. A., J. Ling, P. Ravisankar, J. Yan, A. Cirincione, A. Xu, D. Simpson, D. Yang, A. Bothmer, C. Cotta-Ramusino, J. S. Weissman, and B. Adamson. (2021). “Mapping the genetic landscape of DNA double-strand break repair. Cell 184(22): 5653–5669. doi: 10.1016/j.cell.2021.10.002.

IAEA (International Atomic Energy Agency). (2018). Radiation Protection and Safety in Medical Uses of Ionizing Radiation. https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1775_web.pdf.

IAEA. (2021). Patient Radiation Exposure Monitoring in Medical Imaging. Safety Report Series. Vienna, Austria, International Atomic Energy Agency.

IARC (International Agency for Research on Cancer). (2018). Thyroid Health Monitoring After Nuclear Accidents. IARC Technical Publication No. 46. http://publications.iarc.fr/Book-And-Report-Series/Iarc-Technical-Publications/Thyroid-Health-Monitoring-AfterNuclear-Accidents-2018.

ICGC (International Cancer Genome Consortium). (2010). “International network of cancer genome projects.” Nature 464(7291): 993–998. doi: 10.1038/nature08987. Erratum, Nature 465(7300): 966 (2010).

ICRP (International Commission on Radiological Protection). (1975). Report of the Task Group on Reference Man. ICRP Publication 23. Oxford, UK, Pergamon Press.

ICRP. (1977). “Recommendations of the International Commission on Radiological Protection (ICRP Publication 26).” Annals of the ICRP 1(3).

ICRP. (1979). “Limits for intakes of radionuclides by workers (ICRP Publication 30, Part 1, including addendum).” Annals of the ICRP 2(3–4).

ICRP. (1991). “1990 Recommendations of the International Commission on Radiological Protection (ICRP Publication 60).” Annals of the ICRP 21(1–3).

ICRP. (1994). “Human respiratory tract model for radiological protection: A report of a task group of the International Commission on Radiological Protection (ICRP Publication 66).” Annals of the ICRP 24(1–3).

ICRP. (1995). “Age-dependent doses to members of the public from intake of radionuclides—Part 3, ingestion dose coefficients (ICRP Publication 69).” Annals of the ICRP 25(1).

ICRP. (1996). “Radiological protection and safety in medicine (ICRP Publication 73).” Annals of the ICRP 26(2).

ICRP. (2007). “The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103).” Annals of the ICRP 37(2–4). https://journals.sagepub.com/doi/pdf/10.1177/ANIB_37_2-4.

ICRP. (2009). “Adult reference computational phantoms (ICRP Publication 110).” Annals of the ICRP 39(2).

ICRP. (2012). “ICRP statement on tissue reactions/early and late effects of radiation in normal tissues and organs: Threshold doses for tissue reactions in a radiation protection context (ICRP Publication 118).” Annals of the ICRP 41(1–2). http://journals.sagepub.com/doi/pdf/10.1177/ANIB_41_1-2.

ICRP. (2015). “Occupational intakes of radionuclides: Part 1 (ICRP Publication 130).” Annals of the ICRP 44(2).

ICRP. (2016a). “Occupational intakes of radionuclides: Part 2 (ICRP Publication 134).” Annals of the ICRP 45(3/4): 1–352.

ICRP. (2016b). “The ICRP computational framework for internal dose assessment for reference adults: Specific absorbed fractions (ICRP Publication 133).” Annals of the ICRP 45(2): 1–74.

ICRP. (2020). “Adult mesh-type reference computational phantoms (ICRP Publication 145).” Annals of the ICRP 49(3).

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Ilienko, I. M., N. A. Golyarnik, O. V. Lyaskivska, O. A. Belayev, and D. A. Bazyka. (2018). “Expression of biological markers induced by ionizing radiation at the late period after exposure in a wide range of doses.” Problems of Radiation Medicine and Radiobiology 23: 331–350. doi: 10.33145/2304-8336-2018-23-331-350.

Ingólfsson, H. I., C. Neale, T. S. Carpenter, R. Shrestha, C. A. López, T. H. Tran, T. Oppelstrup, H. Bhatia, L. G. Stanton, X. Zhang, S. Sundram, F. Di Natale, A. Agarwal, G. Dharuman, S. I. L. Kokkila Schumacher, T. Turbyville, G. Gulten, Q. N. Van, D. Goswami, F. Jean-Francois, C. Agamasu, D. Chen, J. J. Hettige, T. Travers, S. Sarkar, M. P. Surh, Y. Yang, A. Moody, S. Liu, B. C. Van Essen, A. F. Voter, A. Ramanathan, N. W. Hengartner, D. K. Simanshu, A. G. Stephen, P. T. Bremer, S. Gnanakaran, J. N. Glosli, F. C. Lightstone, F. McCormick, D. V. Nissley, and F. H. Streitz. (2022). “Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins.” Proceedings of the National Academy of Sciences of the United States of America 119(1): e2113297119. doi: 10.1073/pnas.2113297119.

IOM (Institute of Medicine). (1999). Toward Environmental Justice: Research, Education, and Health Policy Needs. Washington, DC, National Academy Press. doi: 10.17226/6034.

IOM. (2006). Valuing Health for Regulatory Cost-Effectiveness Analysis. Washington, DC, The National Academies Press.

IOM and NRC (National Research Council). (2014). Research on Health Effects of Low-Level Ionizing Radiation Exposure: Opportunities for the Armed Forces Radiobiology Research Institute. Washington, DC, The National Academies Press.

Ishida, Y., T. Takabatake, S. Kakinuma, K. Doi, K. Yamauchi, M. Kaminishi, S. Kito, Y. Ohta, Y. Amasaki, H. Moritake, T. Kokubo, M. Nishimura, T. Nishikawa, O. Hino, and Y. Shimada. (2010). “Genomic and gene expression signatures of radiation in medulloblastomas after low-dose irradiation in Ptch1 heterozygous mice.” Carcinogenesis 31(9): 1694–1701. doi: 10.1093/carcin/bgq145.

Jablon, S., Z. Hrubec, and J. D. Boice, Jr. (1991). “Cancer in populations living near nuclear facilities: A survey of mortality nationwide and incidence in two states.” Journal of the American Medical Association 265(11): 1403–1408. doi: 10.1001/jama.1991.03460110069026.

JCER (Japan Center for Economic Research). (2019). Follow Up Report of Public Financial Burden of the Fukushima Nuclear Accident. Tokyo, Japan Center for Economic Research. https://www.jcer.or.jp/english/accident-cleanup-costsrising-to-35-80-trillion-yen-in-40-years.

Jenkins-Smith, H. C., C. L. Silva, K. Gupta, and R. P. Rechard. (2017). Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey, Sandia National Laboratories.

Jenuwein, T., and C. D. Allis. (2001). “Translating the histone code.” Science 293(5532): 1074–1080. doi: 10.1126/science.1063127.

Jeong, M., Y.-W. Jin, K.H. Yang, Y.-O. Ahn, and C.-Y. Cha. (2010). “Radiation exposure and cancer incidence in a cohort of nuclear power industry workers in the Republic of Korea, 1992–2005.” Radiation and Environmental Biophysics 49(1): 47–55. doi: 10.1007/s00411-009-0247-7.

Jeukens, C. R. L. P. N., H. Boere, B. A. J. M. Wagemans, P. J. Nelemans, E. C. Nijssen, R. Smith-Bindman, J. E. Wildberger, and A. M. Sailer (2021). “Probability of receiving a high cumulative radiation dose and primary clinical indication of CT examinations: A 5-year observational cohort study.” BMJ Open 11(1): e041883. doi: 10.1136/bmjopen-2020-041883.

Jia, T., C. Wang, Z. Han, X. Wang, M. Ding, and Q. Wang. (2020). “Experimental rodent models of cardiovascular diseases.” Frontiers in Cardiovascular Medicine 7: 588075. doi: 10.3389/fcvm.2020.588075.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Jiang, J. X., M. A. Makary, and G. Bai. (2022). “Commercial negotiated prices for CMS-specified shoppable radiology services in U.S. hospitals.” Radiology 302(3): 622–624. doi: 10.1148/radiol.2021211948.

Johnson, B. E., A. L. Creason, J. M. Stommel, J. M. Keck, S. Parmar, C. B. Betts, A. Blucher, C. Boniface, E. Bucher, E. Burlingame, T. Camp, K. Chin, J. Eng, J. Estabrook, H. S. Feiler, M. B. Heskett, Z. Hu, A. Kolodzie, B. L. Kong, M. Labrie, J. Lee, P. Leyshock, S. Mitri, J. Patterson, J. L. Riesterer, S. Sivagnanam, J. Somers, D. Sudar, G. Thibault, B. R. Weeder, C. Zheng, X. Nan, R. F. Thompson, L. M. Heiser, P. T. Spellman, G. Thomas, E. Demir, Y. H. Chang, L. M. Coussens, A. R. Guimaraes, C. Corless, J. Goecks, R. Bergan, Z. Mitri, G. B. Mills, and J. W. Gray. (2022). “An omic and multidimensional spatial atlas from serial biopsies of an evolving metastatic breast cancer.” Cell Reports Medicine 3(2): 100525. doi: 10.1016/j.xcrm.2022.100525.

Johnson, J. (2019). “Can nuclear power help save us from climate change?” Chemical and Engineering News 97(37): 18–19. https://pubs.acs.org/doi/10.1021/cen-09737-feature2.

Jones, C. B., C. M. Davis, and K. S. Sfanos. (2020). “The potential effects of radiation on the gut-brain axis.” Radiation Research 193(3): 209–222. doi: 10.1667/RR15493.1.

Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. ęídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. (2021). “Highly accurate protein structure prediction with AlphaFold.” Nature 596(7873): 583–589. doi: 10.1038/s41586-021-03819-2.

Kaatsch, P., C. Spix, R. Schulze-Rath, S. Schmiedel, and M. Blettner. (2008). “Leukaemia in young children living in the vicinity of German nuclear power plants.” International Journal of Cancer 122(4): 721–726. doi: 10.1002/ijc.23330.

Kaiser, J. C., R. Meckbach, and P. Jacob. (2014). “Genomic instability and radiation risk in molecular pathways to colon cancer.” PLoS ONE 9(10): e111024. doi: 10.1371/journal. pone.0111024.

Kataoka, M., M. Honda, A. Ohashi, K. Yamaguchi, N. Mori, M. Goto, T. Fujioka, M. Mori, Y. Kato, H. Satake, M. Iima, and K. Kubota. (2022). “Ultrafast dynamic contrast-enhanced MRI of the breast: How is it used?” Magnetic Resonance in Medical Sciences 21(1): 83–94. doi: 10.2463/mrms.rev.2021-0157.

Kato, T. A., H. Nagasawa, M. M. Weil, J. B. Little, and J. S. Bedford. (2006). “Levels of γ-H2AX foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two AT families and in another apparently normal individual.” Radiation Research 166(3): 443–453. doi: 10.1667/RR3604.1.

Kato, T. A., P. F. Wilson, H. Nagasawa, M. M. Fitzek, M. M. Weil, J. B. Little, and J. S. Bedford. (2007). “A defect in DNA double strand break processing in cells from unaffected parents of retinoblastoma patients and other apparently normal humans.” DNA Repair 6: 818–829. doi: 10.1016/j.dnarep.2007.01.008.

Keenan, A. B., S. L. Jenkins, K. M. Jagodnik, S. Koplev, E. He, D. Torre, Z. Wang, A. B. Dohlman, M. C. Silverstein, A. Lachmann, M. V. Kuleshov, A. Ma’ayan, V. Stathias, R. Terryn, D. Cooper, M. Forlin, A. Koleti, D. Vidovic, C. Chung, S. C. Schürer, J. Vasiliauskas, M. Pilarczyk, B. Shamsaei, M. Fazel, Y. Ren, W. Niu, N. A. Clark, S. White, N. Mahi, L. Zhang, M. Kouril, J. F. Reichard, S. Sivaganesan, M. Medvedovic, J. Meller, R. J. Koch, M. R. Birtwistle, R. Iyengar, E. A. Sobie, E. U. Azeloglu, J. Kaye, J. Osterloh, K. Haston, J. Kalra, S. Finkbiener, J. Li, P. Milani, M. Adam, R. Escalante-Chong, K. Sachs, A. Lenail, D. Ramamoorthy, E. Fraenkel, G. Daigle, U. Hussain, A. Coye, J. Rothstein, D. Sareen, L. Ornelas, M. Banuelos, B. Mandefro, R. Ho, C. N. Svendsen, R. G. Lim, J. Stocksdale, M. S. Casale, T. G. Thompson, J. Wu, L. M. Thompson, V. Dardov, V. Venkatraman, A. Matlock, J. E. Van Eyk, J. D. Jaffe, Malvina Papanastasiou, A. Subramanian,

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

T. R. Golub, S. D. Erickson, M. Fallahi-Sichani, M. Hafner, N. S. Gray, J.-R. Lin, C. E. Mills, J. L. Muhlich, M. Niepel, C. E. Shamu, E. H Williams, D. Wrobel, P. K. Sorger, L. M. Heiser, J. W. Gray, J. E. Korkola, G. B. Mills, M. LaBarge, H. S. Feiler, M. A. Dane, E. Bucher, M. Nederlof, D. Sudar, S. Gross, D. F. Kilburn, R. Smith, K. Devlin, R. Margolis, L. Derr, A. Lee, and A. Pillai. (2018). “The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.” Cell Systems 6(1): 13–24. doi: 10.1016/j.cels.2017.11.001.

Kendall, G. M., M. P. Little, R. Wakeford, K. J. Bunch, J. C. Miles, T. J. Vincent, J. R. Meara, and M. F. Murphy (2013). “A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006.” Leukemia 27(1): 3–9. doi: 10.1038/leu.2012.151.

Keogh, R. H., P. A. Shaw, P. Gustafson, R. J. Carroll, V. Deffner, K. W. Dodd, H. Küchenhoff, J. A. Tooze, M. P. Wallace, V. Kipnis, and L. S. Freedman. (2020). “STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1—Basic theory and simple methods of adjustment.” Statistics in Medicine 39(16): 2197–2231. doi: 10.1002/sim.8532.

Kim, R. S. (2015). “A new comparison of nested case-control and case-cohort designs and methods.” European Journal of Epidemiology 30(3): 197–207. doi: 10.1007/s10654-014-9974-4.

Kim, S. H., J. M. Park, and H. Kim. (2020). “The prevalence of stroke according to indoor radon concentration in South Koreans: Nationwide cross section study.” Medicine (Baltimore) 99(4): e18859. doi: 10.1097/MD.0000000000018859.

Kitahara, C. M., M. S. Linet, P. Rajaraman, E. Ntowe, and A. Berrington de González. (2015). “A new era of low-dose radiation epidemiology.” Current Environmental Health Reports 2(3): 236–249. doi: 10.1007/s40572-015-0055-y.

Kitahara, C. M., D. L. Preston, G. Neta, M. P. Little, M. M. Doody, S. L. Simon, A. J. Sigurdson, B. H. Alexander, and M. S. Linet. (2018). “Occupational radiation exposure and thyroid cancer incidence in a cohort of U.S. radiologic technologists, 1983–2013.” International Journal of Cancer 143(9): 2145–2149. doi: 10.1002/ijc.31270.

Kitamura, H., T. Okubo, K. Kodama, and the Nuclear Emergency Workers Study Group. (2018). “Epidemiological study of health effects in Fukushima nuclear emergency workers—Study design and progress report.” Radiation Protection Dosimetry 182(1): 40–48. doi: 10.1093/rpd/ncy136.

Kocakavuk, E., K. J. Anderson, F. S. Varn, K. C. Johnson, S. B. Amin, E. P. Sulman, M. P. Lolkema, F. P. Barthel, and R. G. W. Verhaak. (2021). “Radiotherapy is associated with a deletion signature that contributes to poor outcomes in patients with cancer.” Nature Genetics 53(7): 1088–1096. doi: 10.1038/s41588-021-00874-3.

Kodaira, M., H. Ryo, N. Kamada, N. Takahashi, H. Nakajima, T. Nomura, and N. Nakamura. (2010). “No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors.” Radiation Research 173: 205–213. doi: 10.1667/RR1991.1.

Kreuzer, M., and S. Bouffler. (2021). “Guest editorial: Non-cancer effects of ionizing radiation—Clinical implications, epidemiological and mechanistic evidence and research gaps.” Environment International 149: 106286. doi: 10.1016/j.envint.2020.106286.

Kreuzer, M., C. Sobotzki, M. Schnelzer, and N. Fenske. (2018). “Factors modifying the radon-related lung cancer risk at low exposures and exposure rates among German uranium miners. Radiation Research 189(2): 165–176. doi: 10.1667/RR14889.1.

Krewski, D., J. H. Lubin, J. M. Zielinski, M. Alavanja, V. S. Catalan, R. W. Field, J. B. Klotz, E. G. Létourneau, C. F. Lynch, J. L. Lyon, D. P. Sandler, J. B. Schoenberg, D. J. Steck, J. A. Stolwijk, C. Weinberg, and H. B. Wilcox. (2006). “A combined analysis of North American case-control studies of residential radon and lung cancer.” Journal of Toxicology and Environmental Health Part A: Current Issues 69(7): 533–597. doi: 10.1080/15287390500260945.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Kungulovski, G., and A. Jeltsch. (2016). “Epigenome editing: State of the art, concepts, and perspectives.” Trends in Genetics 32(2): 101–113. doi: 10.1016/j.tig.2015.12.001.

Kuntz, R. E., E. M. Antman, R. M. Califf, J. R. Ingelfinger, H. M. Krumholz, A. Ommaya, E. D. Peterson, J. S. Ross, J. Waldstreicher, S. V. Wang, D. A. Zarin, D. M. Whicher, S. M. Siddiqi, and M. Hamilton Lopez. (2019). “Individual patient-level data sharing for continuous learning: A strategy for trial data sharing.” NAM Perspectives. Discussion Paper, Washington, DC, National Academy of Medicine, doi: 10.31478/201906b.

Kusunoki, Y., and T. Hayashi. (2008). “Long-lasting alterations of the immune system by ionizing radiation exposure: Implications for disease development among atomic bomb survivors.” International Journal of Radiation Biology 84(1): 1–14. doi: 10.1080/09553000701616106.

Kusunoki, Y., M. Yamaoka, F. Kasagi, T. Hayashi, D. G. MacPhee, and S. Kyoizumi. (2003). “Long-lasting changes in the T-cell receptor V beta repertoires of CD4 memory T-cell populations in the peripheral blood of radiation-exposed people.” British Journal of Haematology 122(6): 975–984. doi: 10.1046/j.1365-2141.2003.04520.x.

Kwan, M. L., D. L. Miglioretti, E. C. Marlow, E. J. Aiello Bowles, S. Weinmann, S. Y. Cheng, K. A. Deosaransingh, P. Chavan, L. M. Moy, W. E. Bolch, J. R. Duncan, R. T. Greenlee, L. H. Kushi, J. D. Pole, A. K. Rahm, N. K. Stout, and R. Smith-Bindman; Radiation-Induced Cancers Study Team. (2019). “Trends in medical imaging during pregnancy in the United States and Ontario, Canada, 1996 to 2016.” JAMA Network Open 2(7): e197249. doi: 10.1001/jamanetworkopen.2019.7249.

Kwon, D., F. O. Hoffman, B. E. Moroz, and S. L. Simon. (2016). “Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.” Statistics in Medicine 35(3): 399–423. doi: 10.1002/sim.6635.

Kyoizumi, S., M. Yamaoka, Y. Kubo, K. Hamasaki, T. Hayashi, K. Nakachi, F. Kasagi, and Y. Kusunoki. (2010). “Memory CD4 T-cell subsets discriminated by CD43 expression level in A-bomb survivors.” International Journal of Radiation Biology 86(1): 56–62. doi: 10.3109/09553000903272641.

La Tessa, C., M. Sivertz, I. H. Chiang, D. Lowenstein, and A. Rusek. (2016). “Overview of the NASA space radiation laboratory.” Life Sciences in Space Research 11: 18–23. doi: 10.1016/j.lssr.2016.10.002.

Lanekoff, I., V. V. Sharma, and C. Marques. (2022). “Single-cell metabolomics: Where are we and where are we going?” Current Opinion in Biotechnology 75: 102693. doi: 10.1016/j. copbio.2022.102693.

Langholz, B., and D. C. Thomas. (1990). “Nested case-control and case-cohort methods of sampling from a cohort: A critical comparison. American Journal of Epidemiology 131(1): 169–176. doi: 10.1093/oxfordjournals.aje.a115471.

Larsen, S. B., C. J. Cowley, S. M. Sajjath, D. Barrows, Y. Yang, T. S. Carroll, and E. Fuchs. (2021). “Establishment, maintenance, and recall of inflammatory memory.” Cell Stem Cell 28(10): 1758–1774. doi: 10.1016/j.stem.2021.07.001.

Laurier, D., W. Rühm, F. Paquet, K. Applegate, D. Cool, C. Clement, and International Commission on Radiological Protection. (2021). “Areas of research to support the system of radiological protection.” Radiation and Environmental Biophysics 60(4): 519–530. doi: 10.1007/s00411-021-00947-1.

Lave, L. B. (1981). The Strategy of Social Regulation. Washington, DC, Brookings Institution.

Lee, B., J. Sung, M. Yoon, and S. Lee. (2014). “Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT.” Journal of Radiological Protection 34(2): 325–331. doi: 10.1088/0952-4746/34/2/325.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Lei, X., Y. Cao, B. Ma, Y. Zhang, L. Ning, J. Qian, L. Zhang, Y. Qu, T. Zhang, D. Li, Q. Chen, J. Shi, X. Zhang, C. Ma, Y. Zhang, and E. Duan. (2020). “Development of mouse preimplantation embryos in space.” National Science Review 7(9): 1437–1446. doi: 10.1093/nsr/nwaa062.

Leung, C. T., Y. Yang, K. N. Yu, N. Tam, T. F. Chan, X. Lin, R. Y. C. Kong, J. M. Y. Chiu, A. S. T. Wong, W. Y. Lui, K. W. Y. Yuen, K. P. Lai, and R. S. S. Wu. (2021). “Low-dose radiation can cause epigenetic alterations associated with impairments in both male and female reproductive cells.” Frontiers in Genetics 12: 710143. doi: 10.3389/fgene.2021.710143.

Leuraud, K., D. B. Richardson, E. Cardis, R. D. Daniels, M. Gillies, R. Haylock, M. Moissonnier, M. K. Schubauer-Berigan, I. Thierry-Chef, A. Kesminiene, and D. Laurier. (2021). “Risk of cancer associated with low-dose radiation exposure: Comparison of results between the INWORKS nuclear workers study and the A-bomb survivors study. Radiation and Environmental Biophysics 60(1): 23–39. doi: 10.1007/s00411-020-00890-7.

Lewis, J., J. Hoover, and D. MacKenzie. (2017). “Mining and environmental health disparities in Native American communities.” Current Environmental Health Reports 4(2): 130–141. doi: 10.1007/s40572-017-0140-5.

Li, L., A. J. Blomberg, J. D. Spengler, B. A. Coull, J. D. Schwartz, and P. Koutrakis. (2020). “Unconventional oil and gas development and ambient particle radioactivity.” Nature Communications 11: 1–8. doi: 10.1038/s41467-020-18226-w.

Li, R., L. Di, J. Li, W. Fan, Y. Liu, W. Guo, W. Liu, L. Liu, Q. Li, L. Chen, Y. Chen, C. Miao, H. Liu, Y. Wang, Y. Ma, D. Xu, D. Lin, Y. Huang, J. Wang, F. Bai, and C. Wu. (2021). “A body map of somatic mutagenesis in morphologically normal human tissues.” Nature 597(7876): 398–403. doi: 10.1038/s41586-021-03836-1.

Liao, J., W. Huang, and G. Liu. (2015). “Animal models of coronary heart disease. Journal of Biomedical Research 30(1): 3–10. doi: 10.7555/JBR.30.20150051.

Lim, H., A. J. Agopian, L. W. Whitehead, C. W. Beasley, P. H. Langlois, R. J. Emery, and D. K. Waller. (2015). “Maternal occupational exposure to ionizing radiation and major structural birth defects.” Birth Defects Research Part A: Clinical and Molecular Teratology 103(4): 243–254. doi: 10.1002/bdra.23340.

Lin, J. R., M. Fallahi-Sichani, and P. K. Sorger. (2015). “Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method.” Nature Communications 6: 8390. doi: 10.1038/ncomms9390.

Linet, M. S., C. M. Kitahara, E. Ntowe, R. A. Kleinerman, E. S. Gilbert, N. Naito, R. S. Lipner, D. L. Miller, A. Berrington de Gonzalez, and Multi-Specialty Occupational Health Group. (2017). “Mortality in U.S. physicians likely to perform fluoroscopy-guided interventional procedures compared with psychiatrists, 1979 to 2008.” Radiology 284(2): 482–494. doi: 10.1148/radiol.2017161306.

Litkowski, P. E., G. W. Smetana, M. L. Zeidel, and M. S. Blanchard. (2016). “Curbing the urge to image.” American Journal of Medicine 129(10): 1131–1135. doi: 10.1016/j. amjmed.2016.06.020.

Little, M. P., T. V. Azizova, D. Bazyka, S. D. Bouffler, E. Cardis, S. Chekin, V. V. Chumak, F. A. Cucinotta, F. de Vathaire, P. Hall, J. D. Harrison, G. Hildebrandt, V. Ivanov, V. V. Kashcheev, S. V. Klymenko, M. Kreuzer, O. Laurent, K. Ozasa, T. Schneider, S. Tapio, A. M. Taylor, I. Tzoulaki, S. Bouffler, W. L. Vandoolaeghe, R. Wakeford, L. B. Zablotska, W. Zhang, and S. E. Lipshultz. (2012). “Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks.” Environmental Health Perspectives 120(11): 1503–1511. doi: 10.1289/ehp.1204982.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Little, M. P., R. Wakeford, D. Borrego, B. French, L. B. Zablotska, M. J. Adams, R. Allodji, F. de Vathaire, C. Lee, A. V. Brenner, J. S. Miller, D. Campbell, M. S. Pearce, M. M. Doody, E. Holmberg, M. Lundell, S. Sadetzki, M. S. Linet, and A. Berrington de González. (2018). “Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: A pooled analysis of nine historical cohort studies. The Lancet: Haematology 5(8): e346–e358. doi: 10.1016/S2352-3026(18)30092-9.

Little, M. P., E. K. Cahoon, C. M. Kitahara, S. L. Simon, N. Hamada, and M. S. Linet. (2020a). “Occupational radiation exposure and excess additive risk of cataract incidence in a cohort of US radiologic technologists.” Occupational and Environmental Medicine 77(1): 1–8. doi: 10.1136/oemed-2019-105902.

Little, M. P., A. Patel, N. Hamada, and P. Albert. (2020b). “Analysis of cataract in relationship to occupational radiation dose accounting for dosimetric uncertainties in a cohort of U.S. radiologic technologists.” Radiation Research 194(2): 153–161. doi: 10.1667/RR15529.1.

Little, M. P., T. V. Azizova, and N. Hamada. (2021a). “Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: A review of the epidemiology.” International Journal of Radiation Biology 97(6): 782–803. doi: 10.1080/09553002.2021.1876955.

Little, M. P., T. Lee, M. G. Kimlin, C. M. Kitahara, R. Zhang, B. H. Alexander, M. S. Linet, and E. K. Cahoon. (2021b). “Lifetime ambient UV radiation exposure and risk of basal cell carcinoma by anatomic site in a nationwide U.S. cohort, 1983–2005.” Cancer Epidemiology, Biomarkers and Prevention 30(10): 1932–1946. doi: 10.1158/1055-9965. EPI-20-1815.

Little, M. P., A. Patel, C. Lee, M. Hauptmann, A. Berrington de Gonzalez, and P. Albert. (2022a). “Impact of reverse causation on estimates of cancer risk associated with radiation exposure from computerized tomography: A simulation study modeled on brain cancer.” American Journal of Epidemiology 191(1): 173–181. doi: 10.1093/aje/kwab247.

Little, M. P., R. Wakeford, S. D. Bouffler, K. Abalo, M. Hauptmann, N. Hamada, and G. M. Kendall. (2022b). “Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses.” Environment International 159: 106983. doi: 10.1016/j.envint.2021.106983.

Liu, Z., L. D. Lavis, and E. Betzig. (2015). “Imaging live-cell dynamics and structure at the single-molecule level.” Molecular Cell 58(4): 644–659. doi: 10.1016/j.molcel.2015.02.033.

López, C. S., C. Bouchet-Marquis, C. P. Arthur, J. L. Riesterer, G. Heiss, G. Thibault, L. Pullan, S. Kwon, and J. W. Gray. (2017). “A fully integrated, three-dimensional fluorescence to electron microscopy correlative workflow.” Methods in Cell Biology 140: 149–164. doi: 10.1016/bs.mcb.2017.03.008.

Lorenzo-Gonzalez, M., A. Ruano-Ravina, M. Torres-Duran, K. T. Kelsey, M. Provencio, I. Parente-Lamelas, V. Leiro-Fernández, I. Vidal-García, O. Castro-Añón, C. Martínez, A. Golpe-Gómez, M. Zapata-Cachafeiro, M. Piñeiro-Lamas, M. Pérez-Ríos, J. Abal-Arca, C. Montero-Martínez, A. Fernández-Villar, and J. M. Barros-Dios. (2019). “Lung cancer and residential radon in never-smokers: A pooling study in the northwest of Spain.” Environmental Research 172: 713–718. doi: 10.1016/j.envres.2019.03.011.

Low, L. A., and M. A. Giulianotti. (2019). “Tissue chips in space: Modeling human diseases in microgravity.” Pharmaceutical Research 37(1): 8. doi: 10.1007/s11095-019-2742-0.

Low, L. A., and D. A. Tagle. (2017). “Tissue chips—Innovative tools for drug development and disease modeling.” Lab on a Chip 17(18): 3026–3036. doi: 10.1039/c7lc00462a.

Lumniczky, K., N. Impens, G. Armengol, S. Candéias, A. G. Georgakilas, S. Hornhardt, O. A. Martin, F. Rödel, and D. Schaue. (2021). “Low-dose ionizing radiation effects on the immune system.” Environment International 149: 106212. doi: 10.1016/j. envint.2020.106212.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Lun, X. K., and B. Bodenmiller. (2020). “Profiling cell signaling networks at single-cell resolution.” Molecular and Cellular Proteomics 19(5): 744–756. doi: 10.1074/mcp. R119.001790.

Lundgren, B., and H. O. Stefánsson. (2020). “Against the de minimis principle.” Risk Analysis 40(5): 908–914. doi: 10.1111/risa.13445.

Lynge, E. (1996). “Risk of breast cancer is also increased among Danish female airline cabin attendants.” British Medical Journal 312(7025): 253. doi: 10.1136/bmj.312.7025.253.

Lyon, J. L., S. C. Alder, M. B. Stone, A. Scholl, J. C. Reading, R. Holubkov, X. Sheng, G. L. White, Jr., K. T. Hegmann, L. Anspaugh, F. O. Hoffman, S. L. Simon, B. Thomas, R. Carroll, and A. W. Meikle. (2006). “Thyroid disease associated with exposure to the Nevada nuclear weapons test site radiation: A reevaluation based on corrected dosimetry and examination data.” Epidemiology 17(6): 604–614. doi: 10.1097/01. ede.0000240540.79983.7f.

Mabuchi, K., D. L. Preston, A. V. Brenner, H. Sugiyama, M. Utada, R. Sakata, A. Sadakane, E. J. Grant, B. French, E. K. Cahoon, and K. Ozasa. (2020). “Risk of prostate cancer incidence among atomic bomb survivors: 1958–2009.” Radiation Research 195(1): 66–76. doi: 10.1667/RR15481.1.

Machado, S. G., C. E. Land, and F. W. McKay. (1987). “Cancer mortality and radioactive fallout in southwestern Utah.” American Journal of Epidemiology 125(1): 44–61. doi: 10.1093/oxfordjournals.aje.a114511.

Mackenzie, K. J., P. Carroll, L. Lettice, Ž. Tarnauskaitė, K. Reddy, F. Dix, A. Revuelta, E. Abbondati, R. E. Rigby, B. Rabe, F. Kilanowski, G. Grimes, A. Fluteau, P. S. Devenney, R. E. Hill, M. A. Reijns, and A. P. Jackson. (2016). “Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response.” EMBO Journal 35(8): 831–844. doi: 10.15252/embj.201593339.

Makkia, R., K. Nelson, H. Zaidi, and M. Dingfelder. (2019). Construction of realistic hybrid computational fetal phantoms from radiological images in three gestational ages for radiation dosimetry applications.” Physics in Medicine and Biology 64(20): 205003. doi: 10.1088/1361-6560/ab44f8.

Marino, S. A. (2017). “50 years of the Radiological Research Accelerator Facility (RARAF).” Radiation Research 187(4): 413–423. doi: 10.1667/RR002CC.1.

Marshall, B. D. L., and S. Galea. (2015). “Formalizing the role of agent-based modeling in causal inference and epidemiology.” American Journal of Epidemiology 181(2): 92–99. doi: 10.1093/aje/kwu274.

Martinez, N. E., D. W. Jokisch, L. T. Dauer, K. F. Eckerman, R. E. Goans, J. D. Brockman, S. Y. Tolmachev, M. Avtandilashvili, M. T. Mumma, J. D. Boice, Jr., and R. W. Leggett. (2022). “Radium dial workers: Back to the future.” International Journal of Radiation Biology 98(4): 750–768. doi: 10.1080/09553002.2021.1917785.

Marx, V. (2021). “Method of the Year: Spatially resolved transcriptomics.” Nature Methods (1): 9–14. doi: 10.1038/s41592-020-01033-y. Erratum, Nature Methods 18(2): 219 (2021).

Masur, J. S., and E. A. Posner. (2018). “Cost-benefit analysis and the judicial role.” University of Chicago Law Review 85(4): 935–986.

Matzinger, P. (1994). “Tolerance, danger, and the extended family.” Annual Review of Immunology 12(1): 991–1045. doi: 10.1146/annurev.iy.12.040194.005015.

Mayer, S., M.-A. Chevallier, E. Fantuzzi, M. Hajek, M. Luszik-Bhadra, R. Tanner, D. J. Thomas, and F. Vanhavere. (2021). EURADOS Intercomparison IC2017n for Neutron Dosemeters. Neuherberg, European Radiation Dosimetry Group. doi: 10.12768/wxyx-yz95.

Maynard, L. H., O. Humbert, C. W. Peterson, and H. P. Kiem. (2021). “Genome editing in large animal models.” Molecular Therapy 29(11): 3140–3152. doi: 10.1016/j. ymthe.2021.09.026.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Maynard, M. R., J. W. Geyer, J. P. Aris, R. Y. Shifrin, and W. Bolch. (2011). “The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry.” Physics in Medicine and Biology 56(15): 4839–4379. doi: 10.1088/0031-9155/56/15/014.

Maynard, M. R., N. S. Long, N. S. Moawad, R. Y. Shifrin, A. M. Geyer, G. Fong, and W. E. Bolch. (2014). “The UF family of hybrid phantoms of the pregnant female for computational radiation dosimetry.” Physics in Medicine and Biology 59(15): 4325–4343. doi: 10.1088/0031-9155/59/15/4325.

Maynard, M. R., N. B. Shagina, E. I. Tolstykh, M. O. Degteva, T. P. Fell, and W. E. Bolch. (2015a). “Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts, part 1: A Urals-based series of fetal computational phantoms.” Radiation and Environmental Biophysics 54(1): 37–46. doi: 10.1007/s00411-014-0571-4.

Maynard, M. R., N. B. Shagina, E. I. Tolstykh, M. O. Degteva, T. P. Fell, and W. E. Bolch. (2015b). “Fetal organ dosimetry for the Techa River and Ozyorsk Offspring Cohorts, part 2: Radionuclide S values for fetal self-dose and maternal cross-dose.” Radiation and Environmental Biophysics 54(1): 47–59. doi: 10.1007/s00411-014-0570-5.

Mazzei-Abba, A., C. L. Folly, A. Coste, R. Wakeford, M. P. Little, O. Raaschou-Nielsen, G. Kendall, D. Hémon, A. Nikkilä, C. Spix, A. Auvinen, and B. D. Spycher. (2020). “Epidemiological studies of natural sources of radiation and childhood cancer: Current challenges and future perspectives.” Journal of Radiological Protection 40(1): R1–R23. doi: 10.1088/1361-6498/ab5a38.

Mazzei-Abba, A., C. L. Folly, C. Kreis, R. A. Ammann, C. Adam, E. Brack, M. Egger, C. E. Kuehni, and B. D. Spycher. (2021). “External background ionizing radiation and childhood cancer: Update of a nationwide cohort analysis.” Journal of Environmental Radioactivity 238–239: 106734. doi: 10.1016/j.jenvrad.2021.106734.

McBride, W. H., H. Ji-Hong, C.-S. Chiang, J. L. Olson, C.-C. Wang, F. Pajonk, G. J. Dougherty, K. S. Iwamoto, M. Pervan, and Y.-P. Liao. (2004). “A sense of danger from radiation.” Radiation Research 162(1): 1–19. doi: 10.1667/rr3196.

McEwan, A. C., S. L. Simon, K. F. Baverstock, K. R. Trott, K. Sankaranarayanan, and H. G. Paretzke. (1997). “Some reflections on the role of the Scientific Advisory Panel to the Marshall Islands nationwide radiological study.” Health Physics 73(1): 265–269. doi: 10.1097/00004032-199707000-00023.

McKenna, M. J., E. Robinson, L. Taylor, C. Tompkins, M. N. Cornforth, S. L. Simon, and S. M. Bailey. (2019). “Chromosome translocations, inversions and telomere length for retrospective biodosimetry on exposed U.S. atomic veterans.” Radiation Research 191(4): 311–322. doi: 10.1667/RR15240.1.

MELODI (Multidisciplinary European Low Dose Initiative). (2021). Strategic Research Agenda of the Multidisciplinary European Low Dose Initiative (MELODI)—2021. https://melodi-online.eu/wp-content/uploads/2021/10/MELODI-SRA-2021-FINAL-post-consultation.pdf.

Menzel, P. T. (2021). “How should willingness-to-pay values of quality-adjusted life years by updated and according to whom?” AMA Journal of Ethics 23(8): E601–E606. doi: 10.1001/amajethics.2021.601.

Merzenich, H., G. P. Hammer, K. Tröltzsch, K. Ruecker, J. Buncke, F. Fehringer, and M. Blettner. (2014). “Mortality risk in a historical cohort of nuclear power plant workers in Germany: Results from a second follow-up.” Radiation and Environmental Biophysics 53(2): 405–416. doi: 10.1007/s00411-014-0523-z.

Mettler, F. A., Jr., M. Mahesh, M. Bhargavan-Chatfield, C. E. Chambers, J. G. Elee, D. P. Frush, D. L. Miller, H. D. Royal, M. T. Milano, D. C. Spelic, A. J. Ansari, W. E. Bolch, G. M. Guebert, R. H. Sherrier, J. M. Smith, and R. J. Vetter. (2020). “Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006-2016.” Radiology 295(2): 418–427. doi: 10.1148/radiol.2020192256.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Metzcar, J., Y. Wang, R. Heiland, and P. Macklin. (2019). “A review of cell-based computational modeling in cancer biology.” JCO Clinical Cancer Informatics 3: 1–13. doi: 10.1200/CCI.18.00069.

Micke, O., M. H. Seegenschmiedt, I. A. Adamietz, G. Kundt, K. Fakhrian, U. Schaefer, and R. Muecke; German Cooperative Group on Radiotherapy for Nonmalignant Diseases. (2017). “Low-dose radiation therapy for benign painful skeletal disorders: The typical treatment for the elderly patient? International Journal of Radiation Oncology, Biology, Physics 98(4): 958–963. doi: 10.1016/j.ijrobp.2016.12.012.

Miller, R. C., G. Randers-Pehrson, C. R. Geard, E. J. Hall, and D. J. Brenner. (1999). “The oncogenic transforming potential of the passage of single alpha particles through mammalian cell nuclei.” Proceedings of the National Academy of Sciences of the United States of America 96(1): 19–22. doi: 10.1073/pnas.96.1.19.

Mintz, B., and K. Illmensee. (1975). “Normal genetically mosaic mice produced from malignant teratocarcinoma cells.” Proceedings of the National Academy of Sciences of the United States of America 72(9): 3585–3589. doi: 10.1073/pnas.72.9.3585.

Miousse, I. R., C. M. Skinner, V. Sridharan, J. W. Seawright, P. Singh, R. D. Landes, A. K. Cheema, M. Hauer-Jensen, M. Boerma, and I. Koturbash. (2019). “Changes in one-carbon metabolism and DNA methylation in the hearts of mice exposed to space environment-relevant doses of oxygen ions (16O).” Life Sciences in Space Research 22: 8–15. doi: 10.1016/j.lssr.2019.05.003.

Moore, L., D. Leongamornlert, T. H. H. Coorens, M. A. Sanders, P. Ellis, S. C. Dentro, K. J. Dawson, T. Butler, R. Rahbari, T. J. Mitchell, F. Maura, J. Nangalia, P. S. Tarpey, S. F. Brunner, H. Lee-Six, Y. Hooks, S. Moody, K. T. Mahbubani, M. Jimenez-Linan, J. J. Brosens, C. A. Iacobuzio-Donahue, I. Martincorena, K. Saeb-Parsy, P. J. Campbell, and M. R. Stratton. (2020). “The mutational landscape of normal human endometrial epithelium.” Nature 580(7805): 640–646. doi: 10.1038/s41586-020-2214-z.

Morgan, W. F. (2003a). “Non-targeted and delayed effects of exposure to ionizing radiation. I. Radiation-induced genomic instability and bystander effects in vitro.” Radiation Research 159: 567–580. doi: 10.1667/0033-7587(2003)159[0567:nadeoe]2.0.co;2.

Morgan, W. F. (2003b). “Non-targeted and delayed effects of exposure to ionizing radiation. II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiation Research 159: 581–596. doi: 10.1667/0033-7587(2003)159[0581:nadeoe]2.0.co;2.

Morton, L. M., D. M. Karyadi, C. Stewart, T. I. Bogdanova, E. T. Dawson, M. K. Steinberg, J. Dai, S. W. Hartley, S. J. Schonfeld, J. N. Sampson, Y. E. Maruvka, V. Kapoor, D. A. Ramsden, J. Carvajal-Garcia, C. M. Perou, J. S. Parker, M. Krznaric, M. Yeager, J. F. Boland, A. Hutchinson, B. D. Hicks, C. L. Dagnall, J. M. Gastier-Foster, J. Bowen, O. Lee, M. J. Machiela, E. K. Cahoon, A. V. Brenner, K. Mabuchi, V. Drozdovitch, S. Masiuk, M. Chepurny, L. Y. Zurnadzhy, M. Hatch, A. Berrington de Gonzalez, G. A. Thomas, M. D. Tronko, G. Getz, and S. J. Chanock. (2021). “Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident.” Science 372(6543): eabg2538. doi: 10.1126/science.abg2538.

Moses, L., and L. Pachter. (2022). “Museum of spatial transcriptomics.” Nature Methods 19: 534–546. doi: 10.1038/s41592-022-01409-2.

Mukherjee, P., M. Zhou, E. Lee, A. Schicht, Y. Balagurunathan, S. Napel, R. Gillies, S. Wong, A. Thieme, A. Leung, and O. Gevaert. (2020). “A shallow convolutional neural network predicts prognosis of lung cancer patients in multi-institutional CT-image data. Nature Machine Intelligence 2(5): 274–282. doi: 10.1038/s42256-020-0173-6.

Mukherjee, S., E. C. Laiakis, A. J. Fornace, Jr., and S. A. Amundson. (2019). “Impact of inflammatory signaling on radiation biodosimetry: Mouse model of inflammatory bowel disease.” BMC Genomics 20(1): 329. doi: 10.1186/s12864-019-5689-y.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Muller, H. J. (1927). Artificial transmutation of the gene. Science 6(1699): 84–87. doi: 10.1126/science.66.1699.84.

Murakami, M., K. Ono, M. Tsubokura, S. Nomura, T. Oikawa, T. Oka, M. Kami, and T. Oki. (2015). “Was the risk from nursing-home evacuation after the Fukushima accident higher than the radiation risk?” PLoS ONE 10(9): e0137906. doi: 10.1371/journal. pone.0137906.

Nagle, P. W., and R. P. Coppes. (2020). “Current and future perspectives of the use of organoids in radiobiology.” Cells 9(12): 2649. doi: 10.3390/cells9122649.

Nair, R. R., B. Rajan, S. Akiba, P. Jayalekshmi, M. K. Nair, P. Gangadharan, T. Koga, H. Morishima, S. Nakamura, and T. Sugahara. (2009). “Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study.” Health Physics 96(1): 55–66. doi: 10.1097/01.HP.0000327646.54923.11.

Napier, B. A. (2002). “A re-evaluation of the 131I atmospheric releases from the Hanford site.” Health Physics 83(2): 204–226. doi: 10.1097/00004032-200208000-00006.

NASA (National Aeronautics and Space Administration). (2021). Human Research Program Integrated Research Plan. https://humanresearchroadmap.nasa.gov/Documents/IRP_Rev-Current.pdf.

NASA. (2022). NASA Space Flight Human-System Standard: Volume 1: Crew Health. https://standards.nasa.gov/sites/default/files/standards/NASA/B/2022-01-05-NASA-STD-3001-Vol1-Rev-B-Final-Draft-Signature-010522.pdf.

NASEM (National Academies of Sciences, Engineering, and Medicine). (2019a). Independent Assessment of Science and Technology for the Department of Energy’s Defense Environmental Cleanup Program. Washington, DC, The National Academies Press.

NASEM. (2019b). Long-Term Health Monitoring of Populations Following a Nuclear or Radiological Incident in the United States: Proceedings of a Workshop. Washington, DC, The National Academies Press.

NASEM. (2019c). The Future of Low-Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC, The National Academies Press.

NASEM. (2021a). 2021. Global Change Research Needs and Opportunities for 2022–2031. Washington, DC, The National Academies Press.

NASEM. (2021b). Radioactive Sources: Applications and Alternative Technologies. Washington, DC, The National Academies Press.

NASEM. (2021c). Space Radiation and Astronaut Health: Managing and Communicating Cancer Risks. Washington, DC, The National Academies Press.

Natesan, V., and S. J. Kim. (2021). “Lipid metabolism, disorders and therapeutic drugs—Review. Biomolecular Therapy (Seoul) 29(6): 596–604. doi: 10.4062/biomolther.2021.122.

Navaranjan, G., C. Berriault, M. Do, P. J. Villeneuve, and P. A. Demers. (2016). Cancer incidence and mortality from exposure to radon progeny among Ontario uranium miners. Occupational and Environmental Medicine 73(12): 838–845. doi: 10.1136/oemed-2016-103836.

NCI (National Cancer Institute). (1997). Estimated Exposures and Thyroid Doses Received by the American People from Iodine-131 in Fallout Following Nevada Atmospheric Nuclear Bomb Tests: Appendices to the Report. Bethesda, MD, National Cancer Institute.

NCRP (National Council on Radiation Protection and Measurements). (2009a). Ionizing Radiation Exposure of the Population of the United States. Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2009b). Report 164: Uncertainties in Internal Radiation Dose Assessment. Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2013). Report No. 174: Preconception and Prenatal Radiation Exposure: Health Effects and Protective Guidance. Bethesda, MD, National Council on Radiation Protection and Measurements.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

NCRP. (2015a). Health Effects of Low Doses of Radiation: Perspectives on Integrating Radiation Biology and Epidemiology (NCRP Commentary No. 24). Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2015b). Where Are the Radiation Professionals? (WARP). Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2016). Guidance on Radiation Dose Limits for the Lens of the Eye. Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2018a). Implications of Recent Epidemiologic Studies for the Linear-Nonthreshold Model and Radiation Protection (NCRP Commentary No. 27). Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2018b). Report 178: Deriving Organ Doses and Their Uncertainty for Epidemiologic Studies (with a Focus on the One Million U.S. Workers and Veterans Study of Low-Dose Radiation Health Effects). Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2019). Medical Radiation Exposure of Patients in the United States: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2020a). Report No. 186: Approaches for Integrating Information from Radiation Biology and Epidemiology to Enhance Low-Dose Health Risk Assessment: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD, National Council on Radiation Protection and Measurements.

NCRP. (2020b). Overview of Naturally Occurring Radioactive Material/Technologically Enhanced Naturally Occurring Radioactive Material from the Contemporary Oil and Gas Industry (NCRP Commentary No. 29). Bethesda, MD, National Council on Radiation Protection and Measurements.

Neel, J. V. (1998). “Genetic studies at the Atomic Bomb Casualty Commission–Radiation Effects Research Foundation: 1946–1997.” Proceedings of the National Academy of Sciences of the United States of America 95: 5432–5436. doi: 10.1073/pnas.95.10.5432.

Neel, J. V., and W. J. Schull. (1956). “Studies on the potential genetic effects of the atomic bombs.” Acta Genetica et Statistica Medica 6(2): 183–196. doi: 10.1159/000150821.

Neill, R. H., L. Chaturvedi, W. W.-L. Lee, T. M. Clemo, M. K. Silva, J. W. Kenney, W. T. Bartlett, and B. A. Walker. (1996). Review of the WIPP Draft Application to Show Compliance with EPA Transuranic Waste Disosal Standards. Albuquerque, NM, Environmental Evaluation Group. https://inis.iaea.org/collection/NCLCollectionStore/_Public/27/057/27057244.pdf.

Nelson, C. M., and M. J. Bissell. (2006). “Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer.” Annual Review of Cell and Development Biology 22: 287–309. doi: 10.1146/annurev.cellbio.22.010305.104315.

Neriishi, K., E. Nakashima, A. Minamoto, S. Fujiwara, M. Akahoshi, H. K. Mishima, T. Kitaoka, and R. E. Shore. (2007). “Postoperative cataract cases among atomic bomb survivors: Radiation dose response and threshold.” Radiation Research 168(4): 404–408. doi: 10.1667/RR0928.1.

Nickerson, A., T. Huang, L. J. Lin, and X. Nan. (2014). “Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells.” PLoS ONE 9(6): e100589. doi: 10.1371/journal.pone.0100589.

Nikolova, M. P., and M. S. Chavali. (2019). “Recent advances in biomaterials for 3D scaffolds: A review.” Bioactive Materials 4: 271–292. doi: 10.1016/j.bioactmat.2019.10.005.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Noda, A., K. Kato, C. Tamura, L. G. Biesecker, M. Imaizumi, Y. Inoue, G. E. Henderson, B. Wilfond, K. Muto, M. Naito, and J. Kayukawa. (2021). “Ethical, legal and social implications of human genome studies in radiation research: A workshop report for studies on atomic bomb survivors at the Radiation Effects Research Foundation.” Journal of Radiation Research 62(4): 656–661. doi: 10.1093/jrr/rrab043.

Noe, P. R., and J. D. Graham. (2020). “The ascendancy of the cost-benefit state?” Administrative Law Review Accord 5(3): 85–152.

Nomura, S., S. Gilmour, M. Tsubokura, D. Yoneoka, A. Sugimoto, T. Oikawa, M. Kami, and K. Shibuya. (2013). “Mortality risk amongst nursing home residents evacuated after the Fukushima nuclear accident: A retrospective cohort study.” PLoS ONE 8: e60192 doi: 10.1371/journal.pone.0060192.

Normile, D. (2021). “Japan plans to release Fukushima’s wastewater into the ocean: Government says treatment and dilution will minimize risk to marine life and the environment.” ScienceInsider, April 13. doi: 10.1126/science.abi9880.

NRC (National Research Council). (1989). Improving Risk Communication. Washington, DC, National Academy Press.

NRC. (1994). Science and Judgment in Risk Assessment. Washington, DC, National Academy Press.

NRC. (1998a). Research Priorities for Airborne Particulate Matter: I. Immediate Priorities and a Long-Range Research Portfolio. Washington, DC, National Academy Press.

NRC. (1998b). Serving Science and Society in the New Millennium: DOE’s Biological and Environmental Research Program. Washington, DC, National Academy Press.

NRC. (1999a). Health Effects of Exposure to Radon: BEIR VI. Washington, DC, National Academy Press.

NRC. (1999b). Research Priorities for Airborne Particulate Matter: II. Evaluating Research Progress and Updating the Portfolio. Washington, DC, National Academy Press.

NRC. (2000). Review of the Hanford Thyroid Disease Study Draft Final Report. Washington, DC, National Academy Press. https://doi.org/10.17226/9738.

NRC. (2001). Research Priorities for Airborne Particulate Matter: III. Early Research Progress. Washington, DC, National Academy Press.

NRC. (2004). Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress. Washington, DC, The National Academies Press.

NRC. (2005). Assessment of the Scientific Information for the Radiation Exposure Screening and Education Program. Washington, DC, The National Academies Press.

NRC. (2006a). Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC, The National Academies Press.

NRC. (2006b). Review of the Worker and Public Health Activities Program Administered by the Department of Energy and the Department of Health and Human Services. Washington, DC, The National Academies Press.

NRC. (2009). Science and Decisions: Advancing Risk Assessment. Washington, DC, The National Academies Press.

NRC. (2012). Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase 1. Washington, DC, The National Academies Press.

NRC. (2014). Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase 2: Pilot Planning. Washington, DC, The National Academies Press.

NSTC (National Science and Technology Council). (2022). Radiation Biology: A Response to the American Innovation and Competitiveness Act. A Report by the Subcommittee on Physical Sciences Committee on Science of the National Science and Technology Council. https://www.whitehouse.gov/wp-content/uploads/2022/01/LDR-Report-2022.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Nuclear Safety Council and Carlos III Institute of Health. (2009). Epidemiological Study of the Possible Effect of Ionising Radiations Deriving from the Operation of Spanish Nuclear Fuel Cycle Facilities on the Health of the Population Living in Their Vicinity. Environmental and Cancer Epidemiology Unit, National Centre for Epidemiology, Nuclear Safety Council.

Nurk, S., S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R. Vollger, N. Altemose, L. Uralsky, A. Gershman, S. Aganezov, S. J. Hoyt, M. Diekhans, G. A. Logsdon, M. Alonge, S. E. Antonarakis, M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas, N. C. Chen, H. Cheng, C. S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin, T. Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan, E. Garrison, P. G. S. Grady, T. A. Graves-Lindsay, I. M. Hall, N. F. Hansen, G. A. Hartley, M. Haukness, K. Howe, M. W. Hunkapiller, C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M. Kolmogorov, J. Korlach, M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M. McCartney, J. McDaniel, D. E. Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten, P. Peluso, P. A. Pevzner, D. Porubsky, T. Potapova, E. I. Rogaev, J. A. Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J. Sedlazeck, K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F. A. Smit, D. C. Soto, I. Sović, J. M. Storer, A. Streets, B. A. Sullivan, F. Thibaud-Nissen, J. Torrance, J. Wagner, B. P. Walenz, A. Wenger, J. M. D. Wood, C. Xiao, S. M. Yan, A. C. Young, S. Zarate, U. Surti, R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton, R. J. O’Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler, K. H. Miga, and A. M. Phillippy. (2022). “The complete sequence of a human genome.” Science 376(6588): 44–53. doi: 10.1126/science.abj6987.

Nussbaum, R., P. Hoover, C. Grossman, and F. Nussbaum. (2004). “Community-based participatory health survey of Hanford, WA, downwinders: A model for citizen empowerment.” Society and Natural Resources 17(6): 547–559. doi: 10.1080/08941920490452526.

Nuta, O., J. Moquet, S. Bouffler, D. Lloyd, O. Sepai, and K. Rothkamm. (2014). “Impact of long-term exposure to sodium arsenite on cytogenetic radiation damage.” Mutagenesis 29(2): 123–129. doi: 10.1093/mutage/get070.

Ochola, D. O., R. Sharif, J. S. Bedford, T. J. Keefe, T. A. Kato, C. M. Fallgren, P. Demant, S. V. Costes, and M. M. Weila. (2019). “Persistence of gamma-H2AX foci in bronchial cells correlates with susceptibility to radiation associated lung cancer in mice.” Radiation Research 191(1): 67–75. doi: 10.1667/RR14979.1.

Olney, R. (2021). “The geospatial economy: A flood of geospatial data is here to lift all boats.” Forbes, September 1. https://www.forbes.com/sites/forbestechcouncil/2021/09/01/the-geo-spatial-economy-a-flood-of-geospatial-data-is-here-to-lift-all-boats/?sh=3d413b474982.

Oradovskaia, I. V., I. G. Pashchenkova, V. V. Feoktistov, M. F. Nikonova, G. K. Vikulov, N. V. Bozheskaia, and N. N. Smirnova. (2011). “The epidemiological analysis of monitoring of the immune status in liquidators of consequences of the Chernobyl accident for early identification of risk groups and diagnostics of oncological diseases. Report 2. Dependence of frequency and changes in the immune status on risk factors of radiation accident.” Radiatsionnaia Biologiia, Radioecologiia 51(1): 117–133.

OSHA (Occupational Safety and Health Administration). (1977). “Occupational exposure to benzene: Emergency temporary standards.” Federal Register 42: 22516–22529. Washington, DC, Occupational Safety and Health Administration, Department of Labor.

Osman, M., P. Ayton, F. Bouder, N. Pidgeon, and R. Lofstedt. (2019). “Evidence based uncertainty: What is needed now?” Journal of Risk Research 24(5): 1–7. doi: 10.1080/13669877.2019.1646316.

Otake, M., and W. J. Schull. (1998). “Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors.” International Journal of Radiation Biology 74(2): 159–171. doi: 10.1080/095530098141555.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Otake, M., W. J. Schull, and J. V. Neel. (1990). “Congenital malformations, stillbirths, and early mortality among the children of atomic bomb survivors: A reanalysis.” Radiation Research 122(1): 1–11. doi: 10.2307/3577576.

Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama, and K. Kodama. (2012). “Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: An overview of cancer and noncancer diseases.” Radiation Research 177(3): 229–243. doi: 10.1667/rr2629.1.

Ozasa, K., E. J. Grant, and K. Kodama. (2018). “Japanese legacy cohorts: The Life Span Study of Atomic Bomb Survivor cohort and survivors’ offspring.” Journal of Epidemiology 28: 162–169. doi: 10.2188/jea.JE20170321.

Ozasa, K., H. M., Cullings, W. Ohishi, A. Hida, and E. J. Grant. (2019). “Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation.” International Journal of Radiation Biology 95(7): 879–891. doi: 10.1080/09553002.2019.1569778.

Park, J. J. H., R. Mogg, G. E. Smith, E. Nakimuli-Mpungu, F. Jehan, C. R. Rayner, J. Condo, E. H. Decloedt, J. B. Nachega, G. Reis, and E. J. Mills. (2021). “How COVID-19 has fundamentally changed clinical research in global health.” The Lancet: Global Health 9(5): e711–e720. doi: 10.1016/S2214-109X(20)30542-8.

Pasqual, E., F. Boussin, D. Bazyka, A. Nordenskjold, M. Yamada, K. Ozasa, S. Pazzaglia, L. Roy, I. Thierry-Chef, F. de Vathaire, M. Abderrafi, and E. C. Benotmane. (2021). “Cognitive effects of low dose of ionizing radiation—Lessons learned and research gaps from epidemiological and biological studies.” Environment International 147: 106295. doi: 10.1016/j.envint.2020.106295.

Patrinos, A., and D. W. Drell. (1997). “The Human Genome Project: View from the Department of Energy.” Journal of the American Medical Women’s Association 52(1): 8–10.

Paul, S., N. J. Kleiman, and S. A. Amundson. (2019). “Transcriptomic responses in mouse blood during the first week after in vivo gamma irradiation.” Scientific Reports 9(1): 18364. doi: 10.1038/s41598-019-54780-0.

Paunesku, T., and G. Woloschak. (2018). “Reflections on basic science studies involving low doses of ionizing radiation. Health Physics 115(5): 623–627. doi: 10.1097/HP.0000000000000937.

Paunesku, T., A. Stevanović, J. Popović, and G. E. Woloschak. (2021). “Effects of low dose and low dose rate low linear energy transfer radiation on animals—Review of recent studies relevant for carcinogenesis.” International Journal of Radiation Biology 97(6): 1–22. doi: 10.1080/09553002.2020.1859155.

Pearce, M. S., J. A. Salotti, M. P. Little, K. McHugh, C. Lee, K. P. Kim, N. L. Howe, C. M. Ronckers, P. Rajaraman, A. W. Sir Craft, L. Parker, and A. Berrington de González. (2012). “Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study.” The Lancet 380(9840): 499–505. doi: 10.1016/S0140-6736(12)60815-0.

Peng, Y., H. Nagasawa, C. Warner, and J. S. Bedford. (2012). “Genetic susceptibility: Radiation effects relevant to space travel.” Health Physics 103(5): 607–620. doi: 10.1097/HP.0b013e31826945b9.

Penn, I., and E. Lipton. (2021). “The lithium gold rush: Inside the rush to power electric vehicles.” The New York Times, May 6. https://www.nytimes.com/2021/05/06/business/lithium-mining-race.html.

Perez, R. E., S. Younger, E. Bertheau, C. M. Fallgren, M. M. Weil, and J. Raber. (2020). “Effects of chronic exposure to a mixed field of neutrons and photons on behavioral and cognitive performance in mice.” Behavioural Brain Research 379: 112377. doi: 10.1016/j.bbr.2019.112377.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Perez Horta, Z. P., C. M. Case, Jr., and A. L. DiCarlo. (2019). “Use of growth factors and cytokines to treat injuries resulting from a radiation public health emergency.” Radiation Research 192(1): 92–97. doi: 10.1667/RR15383.1.

Pernot, E., J. Hall, S. Baatout, M.A. Benotmane, E. Blanchardon, S. Bouffler, H. El Saghire, M. Gomolka, A. Guertler, M. Harms-Ringdahl, P. Jeggo, M. Kreuzer, D. Laurier, C. Lindholm, R. Mkacher, R. Quintens, K. Rothkamm, L. Sabatier, S. Tapio, F. de Vathaire, and E. Cardis. (2012). “Ionizing radiation biomarkers for potential use in epidemiological studies.” Mutation Research 751(2): 258–286. doi: 10.1016/j.mrrev.2012.05.003.

Peterson, A., and M. Cooke. (2019). “CANDLE illuminates new pathways in fight against cancer.” energy.gov, August 14. https://www.energy.gov/articles/candle-illuminates-new-pathways-fight-against-cancer.

Petoussi-Henss, N., D. Satoh, H. Schlattl, M. Zankl, and V. Spielmann. (2021). “Organ doses of the fetus from external environmental exposures.” Radiation and Environmental Biophysics 60(1): 93–113. doi: 10.1007/s00411-020-00891-6.

Pinkerton, L. E., M. J. Hein, J. L. Anderson, A. Christianson, M. P. Little, A. J. Sigurdson, and M. K. Schubauer-Berigan. (2018). “Melanoma, thyroid cancer, and gynecologic cancers in a cohort of female flight attendants.” American Journal of Industrial Medicine 61(7): 572–581. doi: 10.1002/ajim.22854.

Pollard, J. M., and R. A. Gatti. (2009). “Clinical radiation sensitivity with DNA repair disorders: An overview.” International Journal of Radiation Oncology, Biology, Physics 74(5): 1323–1331. doi: 10.1016/j.ijrobp.2009.02.057.

Popov, V. V., E. V. Kudryavtseva, N. Kumar Katiyar, A. Shishkin, S. I. Stepanov, and S. Goel. (2022). “Industry 4.0 and digitalisation in healthcare.” Materials (Basel) 15(6): 2140. doi: 10.3390/ma15062140.

Preston, D. L., H. Cullings, A. Suyama, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi, K. Kodama, F. Kasagi, and R. E. Shore. (2008). “Solid cancer incidence in atomic bomb survivors exposed in utero or as young children.” Journal of the National Cancer Institute 100(6): 428–436. doi: 10.1093/jnci/djn045.

Preston, D. L., C. M. Kitahara, D. M. Freedman, A. J. Sigurdson, S. L. Simon, M. P. Little, E. K. Cahoon, P. Rajaraman, J. S. Miller, B. H. Alexander, M. M. Doody, and M. S. Linet. (2016). “Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. British Journal of Cancer 115:1105. https://doi.org/10.1038/bjc.2016.292.

Pukkala, E., A. Auvinen, and G. Wahlberg. (1995). “Incidence of cancer among Finnish airline cabin attendants, 1967–92.” British Medical Journal 311(7006): 649–652. doi: 10.1136/bmj.311.7006.649.

Puskin, J. S. (2009). “Perspective on the use of LNT for radiation protection and risk assessment by the U.S. Environmental Protection Agency.” Dose-Response 7(4): 284–291. doi: 10.2203/dose-response.09-005.Puskin.

Putnam, F. W. (1998). “The Atomic Bomb Casualty Commission in retrospect.” Proceedings of the National Academy of Sciences of the United States of America 95(10):5426–5431. doi: 10.1073/pnas.95.10.5426.

Quake, S. R. (2022). “A decade of molecular cell atlases.” Trends in Genetics 29:S0168-9525(22)00004-X. doi: 10.1016/j.tig.2022.01.004.

Quigley, D., J. J. Alumkal, A. W. Wyatt, V. Kothari, A. Foye, P. Lloyd, R. Aggarwal, W. Kim, E. Lu, J. Schwartzman, K. Beja, M. Annala, R. Das, M. Diolaiti, C. Pritchard, G. Thomas, S. Tomlins, K. Knudsen, C. J. Lord, C. Ryan, J. Youngren, T. M. Beer, A. Ashworth, E. J. Small, and F. Y. Feng. (2017). “Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP Inhibitors.” Cancer Discovery 7(9): 999–1005. doi: 10.1158/2159-8290.CD-17-0146.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Radisky, D. C., and M. J. Bissell. (2004). “Cancer. Respect thy neighbor!” Science 303(5659): 775–777. doi: 10.1126/science.1094412.

Rage, E., S. Caër-Lorho, D. Drubay, S. Ancelet, P. Laroche, and D. Laurier. (2015). “Mortality analyses in the updated French cohort of uranium miners (1946–2007).” International Archives of Occupational and Environmental Health 88(6): 717–730. doi: 10.1007/s00420-014-0998-6.

Rage, E., D. B. Richardson, P. A. Demers, M. Do, N. Fenske, M. Kreuzer, J. Samet, C. Wiggins, M. K. Schubauer-Berigan, K. Kelly-Reif, L. Tomasek, L. B. Zablotska, and D. Laurier. (2020). “PUMA—Pooled Uranium Miners Analysis: Cohort profile.” Occupational and Environmental Medicine 77(3): 194–200. doi: 10.1136/oemed-2019-105981.

Rajaraman, P., M. M. Doody, C. L. Yu, D. L. Preston, J. S. Miller, A. J. Sigurdson, D. M. Freedman, B. H. Alexander, M. P. Little, D. L. Miller, and M. S. Linet. (2016). “Incidence and mortality risks for circulatory diseases in US radiologic technologists who worked with fluoroscopically guided interventional procedures, 1994–2008.” Occupational and Environmental Medicine 73(1): 21–27. doi: 10.1136/oemed-2015-102888.

Rajaraman, P., M. Hauptmann, S. Bouffler, and A. Wojcik. (2018). “Human individual radiation sensitivity and prospects for prediction.” Annals of the ICRP 47(3–4): 126–141. doi: 10.1177/0146645318764091.

Randers-Pehrson, G., G. W. Johnson, S. A. Marino, Y. Xu, A. D. Dymnikov, and D. J. Brenner. (2009). “The Columbia University sub-micron charged particle beam.” Nuclear Instruments and Methods in Physics Research: Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 609(2): 294–299. doi: 10.1016/j.nima.2009.08.041.

Rehani, M. M., K. Yang, E. R. Melick, J. Heil, D. Šalát, W. F. Sensakovic, and B. Liu. (2020). “Patients undergoing recurrent CT scans: Assessing the magnitude.” European Radiology 30(4): 1828–1836. doi: 10.1007/s00330-019-06523-y.

Reid, J. R., and L. J. States. (2018). “Ionizing radiation use and cancer predisposition syndromes in children.” Journal of the American College of Radiologists 15(9): 1238–1239. doi: 10.1016/j.jacr.2018.04.011.

Richardson, D. B., E. Cardis, R. D. Daniels, M. Gillies, J. A. O’Hagan, G. B. Hamra, R. Haylock, D. Laurier, K. Leuraud, M. Moissonnier, M. K. Schubauer-Berigan, I. Thierry-Chef, and A. Kesminiene. (2015). “Risk of cancer from occupational exposure to ionising radiation: Retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS).” BMJ (Clinical Research ed.) 351: h5359. doi: 10.1136/bmj. h5359. Erratum, BMJ (Clinical Research ed.) 351: h6634.

Richardson, D. B., E. Rage, P. A. Demers, M. T. Do, N. DeBono, N. Fenske, V. Deffner, M. Kreuzer, J. Samet, C. Wiggins, M. K. Schubauer-Berigan, K. Kelly-Reif, L. Tomasek, L. B. Zablotska, and D. Laurier. (2021). “Mortality among uranium miners in North America and Europe: The Pooled Uranium Miners Analysis (PUMA).” International Journal of Epidemiology 50(2): 633–643. https://doi.org/10.1093/ije/dyaa195.

Riesterer, J. L., C. S. López, E. S. Stempinski, M. Williams, K. Loftis, K. Stoltz, G. Thibault, C. Lanicault, T. Williams, and J. W. Gray. (2020). “A workflow for visualizing human cancer biopsies using large-format electron microscopy.” Methods in Cell Biology 158: 163–181. doi: 10.1016/bs.mcb.2020.01.005.

Rizki, A., and M. J. Bissell. (2004). “Homeostasis in the breast: It takes a village.” Cancer Cell 6(1): 1–2. doi: 10.1016/j.ccr.2004.06.019.

Rodier, F., J. P. Coppe, C. K. Patil, W. A. Hoeijmakers, D. P. Munoz, S. R. Raza, A. Freund, E. Campeau, A. R. Davalos, and J. Campisi. (2009). “Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion.” Nature Cell Biology 11(8): 973–979. doi: 10.1038/ncb1909.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Rodrigues-Moreira, S., S. G. Moreno, G. L. Ghinatti, D. Lewandowski, F. Hoffschir, F. Ferri, A.-S. Gallouet, D. Gay, H. Motohashi, M. Yamamoto, M. C. Joiner, N. Gault, and P.-H. Romeo. (2017). “Low-dose irradiation promotes persistent oxidative stress and decreases self-renewal in hematopoietic stem cells.” Cell Reports 20: 3199–3211. doi: 10.1016/j. celrep.2017.09.013.

Rola, R., V. Sarkissian, A. Obenaus, G. A. Nelson, S. Otsuka, C. L. Limoli, and J. R. Fike. (2005). “High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis.” Radiation Research 164(4 Pt. 2): 556–560. doi: 10.1667/rr3412.1.

Rothkamm, K., and M. Löbrich. (2003). “Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses.” Proceedings of the National Academy of Sciences of the United States of America 100(9): 5057–5062. doi: 10.1073/pnas.0830918100.

Rozenblatt-Rosen, O., A. Regev, P. Oberdoerffer, T. Nawy, A. Hupalowska, J. E. Rood, O. Ashenberg, E. Cerami, R. J. Coffey, E. Demir, L. Ding, E. D. Esplin, J. M. Ford, J. Goecks, S. Ghosh, J. W. Gray, J. Guinney, S. E. Hanlon, S. K. Hughes, E. S. Hwang, C. A. Iacobuzio-Donahue, J. Jané-Valbuena, B. E. Johnson, K. S. Lau, T. Lively, S. A. Mazzilli, D. Pe’er, S. Santagata, A. K. Shalek, D. Schapiro, M. P. Snyder, P. K. Sorger, A. E. Spira, S. Srivastava, K. Tan, R. B. West, and E. H. Williams; Human Tumor Atlas Network. (2020). “The Human Tumor Atlas Network: Charting tumor transitions across space and time at single-cell resolution.” Cell 181(2): 236–249. doi: 10.1016/j.cell.2020.03.053.

Rubin, G. D. (2014). “Computed tomography: Revolutionizing the practice of medicine for 40 years.” Radiology 273(2 Suppl.): S45–S74. doi: 10.1148/radiol.14141356.

Rühm, W., M. Eidemüller, and J. C. Kaiser. (2017). “Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data.” International Journal of Radiation Biology 93(10): 1093–1117. doi: 10.1080/09553002.2017.1310405.

Rühm, W., D. Laurier, and R. Wakeford. (2022). “Cancer risk following low doses of ionising radiation—Current epidemiological evidence and implications for radiological protection.” Mutation Research: Genetic Toxicology and Environmental Mutagenesis 873: 503436. doi: 10.1016/j.mrgentox.2021.503436.

Russell, W. L. (1951). “X-ray-induced mutations in mice.” Cold Spring Harbor Symposia on Quantitative Biology 16: 327–336. doi: 10.1101/sqb.1951.016.01.024.

Sadakane, A., B. French, A. V. Brenner, D. L. Preston, H. Sugiyama, E. J. Grant, R. Sakata, M. Utada, E. K. Cahoon, K. Mabuchi, and K. Ozasa. (2019). “Radiation and risk of liver, biliary tract, and pancreatic cancers among atomic bomb survivors in Hiroshima and Nagasaki: 1958–2009.” Radiation Research 192(3): 299–310. doi: 10.1667/RR15341.1.

Sadowitz, M., and J. D. Graham. (1995). “A survey of residual cancer risks permitted by health, safety and environmental policy.” Risk: Health, Safety and Environment 6(1): 17–35.

Saenko, V., V. Ivanov, A. Tsyb, T. Bogdanova, M. Tronko, Y. Demidchik, and S. Yamashita. (2011). “The Chernobyl accident and its consequences.” Clinical Oncology 23(4): 234–243. doi: 10.1016/j.clon.2011.01.502.

Sakata, R., D. L. Preston, A. V. Brenner, H. Sugiyama, E. J. Grant, P. Rajaraman, A. Sadakane, M. Utada, B. French, E. K. Cahoon, K. Mabuchi, and K. Ozasa. (2019). “Radiation-related risk of cancers of the upper digestive tract among Japanese atomic bomb survivors.” Radiation Research 192(3): 331–344. doi: 10.1667/RR15386.1.

Samet, J. M., D. R. Pathak, M. V. Morgan, C. R. Key, A. A. Valdivia, and J. H. Lubin. (1991). “Lung cancer mortality and exposure to radon progeny in a cohort of New Mexico underground uranium miners.” Health Physics 61: 745–752. doi: 10.1097/00004032-199112000-00005.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Sato, T., S. Funamoto, C. Paulbeck, K. Griffin, C. Lee, H. Cullings, S. D. Egbert, A. Endo, N. Hertel, and W. E. Bolch. (2020). “Dosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors: Methodological improvements and organ dose response functions.” Radiation Research 194(4): 390–402. doi: 10.1667/RR15546.1.

Save the Children. (2012). Fukushima Families: Children and Families Affected by Fukushima’s Nuclear Crisis Share Their Concerns One Year on. http://www.savethechildren.org/atf/cf/%7B9def2ebe-10ae432c-9bd0-df91d2eba74a%7D/JAPAN_FUKUSHIMA_FAMILIES_REPORT.PDF.

Sawano, T., Y. Nishikawa, A. Ozaki, C. Leppold, and M. Tsubokura. (2018). “The Fukushima Daiichi Nuclear Power Plant accident and school bullying of affected children and adolescents: The need for continuous radiation education.” Journal of Radiation Research 59(3): 381–384. doi: 10.1093/jrr/rry025.

Schapiro, D., C. Yapp, A. Sokolov, S. M. Reynolds, Y. A. Chen, D. Sudar, Y. Xie, J. Muhlich, R. Arias-Camison, S. Arena, A. J. Taylor, M. Nikolov, M. Tyler, J. R. Lin, E. A. Burlingame, Human Tumor Atlas Network; Y. H. Chang, S. L. Farhi, V. Thorsson, N. Venkatamohan, J. L. Drewes, D. Pe’er, D. A. Gutman, M. D. Herrmann, N. Gehlenborg, P. Bankhead, J. T. Roland, J. M. Herndon, M. P. Snyder, M. Angelo, G. Nolan, J. R. Swedlow, N. Schultz, D. T. Merrick, S. A. Mazzili, E. Cerami, S. J. Rodig, S. Santagata, and P. K. Sorger. (2022). “MITI minimum information guidelines for highly multiplexed tissue images.” Nature Methods 19(3): 262–267. doi: 10.1038/s41592-022-01415-4.

Schimmerling, W. (2011). NASA Space Radiation Program Interagency Collaboration. https://three.jsc.nasa.gov/articles/InteragencyCollaboration030211.pdf.

Schonfeld, S. J., L. Y. Krestinina, S. Epifanova, M. O. Degteva, A. V. Akleyev, and D. L. Preston. (2013). Solid cancer mortality in the Techa River cohort (1950–2007). Radiation Research 179(2): 183–189. doi: 10.1667/RR2932.1.

Schubauer-Berigan, M. K., R. D. Daniels, and L. E. Pinkerton. (2009). “Radon exposure and mortality among White and American Indian uranium miners: An update of the Colorado Plateau cohort.” American Journal of Epidemiology 169(6): 718–730. doi: 10.1093/aje/kwn406.

Schubauer-Berigan, M. K., R. D. Daniels, S. J. Bertke, C.-Y. Tseng, and D. B. Richardson. (2015). “Cancer mortality through 2005 among a pooled cohort of U.S. nuclear workers exposed to external ionizing radiation.” Radiation Research 183(6): 620–631. doi: 10.1667/RR13988.1.

Schubauer-Berigan, M. K., A. Berrington de Gonzalez, E. Cardis, D. Laurier, J. H. Lubin, M. Hauptmann, and D. B. Richardson. (2020). “Evaluation of confounding and selection bias in epidemiological studies of populations exposed to low-dose, high-energy photon radiation.” Journal of the National Cancer Institute Monographs 2020(56): 133–153. doi: 10.1093/jncimonographs/lgaa008.

Schull, W. J., M. Otake, and J. V. Neel. (1981). “Genetic effects of the atomic bombs: A reappraisal.” Science 213(4513): 1220–1227.

Seibold, P., A. Auvinen, D. Averbeck, M. Bourguignon, J. M. Hartikainen, C. Hoeschen, O. Laurent, G. Noël, L. Sabatier, S. Salomaa, and M. Blettner. (2020). “Clinical and epidemiological observations on individual radiation sensitivity and susceptibility.” International Journal of Radiation Biology 96(3): 324–339. doi: 10.1080/09553002.2019.1665209.

Seltser, R., and P. E. Sartwell. (1965). “The influence of occupational exposure to radiation on the mortality of American radiologists and other medical specialists. American Journal of Epidemiology 81(1): 2–22. doi: 10.1093/oxfordjournals.aje.a120493.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Sermage-Faure, C., D. Laurier, S. Goujon-Bellec, M. Chartier, A. Guyot-Goubin, J. Rudant, D. Hémon, and J. Clavel. (2012). “Childhood leukemia around French nuclear power plants—The geocap study, 2002–2007.” International Journal of Cancer 131(5): E769–E780. doi: 10.1002/ijc.27425.

Shakhov, A. N., V. K. Singh, F. Bone, A. Cheney, Y. Kononov, P. B.-T. Krasnov, T. K. Bratanova-Toshkova, V. V. Shakhova, J. Young, M. M. Weil, A. Panoskaltsis-Mortari, C. M. Orschell, P. S. Baker, A. Gudkov, and E. Feinstein. (2012). “Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-like receptor 2 (TLR2).” PLoS ONE 7(3): e33044. doi: 10.1371/journal.pone.0033044.

Shaw, P. A., P. Gustafson, R. J. Carroll, V. Deffner, K. W Dodd., R. H. Keogh, V. Kipnis, J. A. Tooze, M. P. Wallace, H. Küchenhoff, and L. S. Freedman. (2020). “STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2—More complex methods of adjustment and advanced topics.” Statistics in Medicine 39(16): 2232–2263. doi: 10.1002/sim.8531.

Shaw, P. A., J. He, and B. E. Shepherd. (2021). “Regression calibration to correct correlated errors in outcome and exposure.” Statistic in Medicine 40(2): 271–286. doi: 10.1002/sim.8773.

Shimura, T., J. Kobayashi, K. Komatsu, and N. Kunugita. (2016). “Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells.” Cell Cycle 15(8): 1099–1107. doi: 10.1080/15384101.2016.1156276.

Shore, R. E. (2016). “Radiation and cataract risk: Impact of recent epidemiologic studies on ICRP judgments.” Mutation Research—Reviews in Mutation Research 770(Pt. B): 231–237. doi: 10.1016/j.mrrev.2016.06.006.

Signorello, L. B., H. M. Munro, J. D. Boice, Jr., J. J. Mulvihill, D. M. Green, L. L. Robison, M. Stovall, R. E. Weathers, A. C. Mertens, and J. A. Whitton. (2010). “Stillbirth and neonatal death in relation to radiation exposure before conception: A retrospective cohort study.” The Lancet 376(9741): 624–630. doi: 10.1016/S0140-6736(10)60752-0.

Signorello, L. B., J. J. Mulvihill, D. M. Green, H. M. Munro, M. Stovall, R. E. Weathers, A. C. Mertens, J. A. Whitton, L. L. Robison, and J. D. Boice, Jr. (2012). “Congenital anomalies in the children of cancer survivors: A report from the childhood cancer survivor study.” Journal of Clinical Oncology 30(3): 239–245. doi: 10.1200/JCO.2011.37.2938.

Sigurdson, A. J., and E. Ron. (2004). “Cosmic radiation exposure and cancer risk among flight crew.” Cancer Investigation 22(5): 743–761. doi: 10.1081/cnv-200032767.

Simon, S. L., and M. S. Linet. (2014). “Radiation-exposed populations: Who, why, and how to study.” Health Physics 106(2): 182–195. doi: 10.1097/HP.0000000000000006.

Simon, S. L., F. O. Hoffman, and E. Hofer. (2015). “The two-dimensional Monte Carlo: A new methodologic paradigm for dose reconstruction for epidemiological studies.” Radiation Research 183(1): 27–41. doi: 10.1667/RR13729.1.

Simon, S. L., A. Bouville, H. L. Beck, and D. R. Melo. (2020). “Estimated radiation doses received by New Mexico residents from the 1945 Trinity Nuclear Test.” Health Physics 119(4): 428–477. doi: 10.1097/HP.0000000000001328.

Simonsen, L. C., T. C. Slaba, P. Guida, and A. Rusek. (2020). “NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research.” PLoS Biology 18: e3000669. doi: 10.1371/journal.pbio.3000669.

Slovic, P. (2012). “The perception gap: Radiation and risk.” Bulletin of the Atomic Scientists 68(3): 67–75. https://doi.org/10.1177/0096340212444870.

Smith, C., K. Shirvan, J. Christensen, and K. Vedros. (2021). “Making emergency planning zones smarter: A risk-informed approach for new reactors.” Nuclear Newswire, April 16.

Smith, T. C., D. J. Spiegelhalter, and A. Thomas. (1995). “Bayesian approaches to random-effects meta-analysis: A comparative study.” Statistics in Medicine 14(24): 2685–2699. doi: 10.1002/sim.4780142408.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Smith-Bindman, R., C. Aubin, J. Bailitz, R. N. Bengiamin, C. A. Camargo, J. Corbo, A. J. Dean, R. B. Goldstein, R. T. Griffey, G. D. Jay, T. L. Kang, D. R. Kriesel, O. J. Ma, M. Mallin, W. Manson, J. Melnikow, D. L. Miglioretti, S. K. Miller, L. D. Mills, J. R. Miner, M. Moghadassi, V. E. Noble, G. M. Press, M. L. Stoller, V. E. Valencia, J. Wang, R. C. Wang, and S. R. Cummings. (2014). “Ultrasonography versus computed tomography for suspected nephrolithiasis.” New England Journal of Medicine 371: 1100–1110. doi: 10.1056/NEJMoa1404446.

Smith-Bindman, R., M. Moghadassi, R. T. Griffey, C. A. Camargo, Jr., J. Bailitz, M. Beland, and D. L. Miglioretti. (2015). “Computed tomography radiation dose in patients with suspected urolithiasis.” JAMA Internal Medicine 175(8): 1413–1416. doi: 10.1001/jamainternmed.2015.2697.

Snijders, A. M., F. Marchetti, S. Bhatnagar, N. Duru, J. Han, Z. Hu, J.-H. Mao, J. W. Gray, and A. J. Wyrobek. (2012). “Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.” PLoS ONE 7: e45394. doi: 10.1371/journal.pone.0045394.

Soares, S., S. G. Guerreiro, N. Cruz-Martins, I. Faria, P. Baylina, M. G. Sales, M. A. Correa-Duarte, and R. Fernandes. (2021). “The influence of miRNAs on radiotherapy treatment in prostate cancer—A systematic review.” Frontiers in Oncology 11: 704664. doi: 10.3389/fonc.2021.704664.

SPEERA (Secretarial Panel for the Evaluation of Epidemiological Research Activities for the Department of Energy). (1990). Report to the Secretary: Secretarial Panel for the Evaluation of Epidemiological Research Activities for the Department of Energy. Washington, DC, Department of Energy.

Spix, C., S. Schmiedel, P. Kaatsch, R. Schulze-Rath, and M. Blettner. (2008). “Case-control study on childhood cancer in the vicinity of nuclear power plants in Germany 1980–2003.” European Journal of Cancer 44(2): 275–284. doi: 10.1016/j.ejca.2007.10.024.

Spix, C., B. Grosche, M. Bleher, P. Kaatsch, P. Scholz-Kreisel, and M. Blettner. (2017). “Background gamma radiation and childhood cancer in Germany: An ecological study.” Radiation and Environmental Biophysics 56(2): 127–138. doi: 10.1007/s00411-017-0689-2.

Sprung, C. N., A. Ivashkevich, H. B. Forrester, C. E. Redon, A. Georgakilas, and O. A. Martin. (2015). Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects.” Cancer Letters 356(1): 72–81. doi: 10.1016/j.canlet.2013.09.008.

SSFL (Santa Susana Field Laboratory) Advisory Panel. (2006). Report of the Santa Susana Field Laboratory Advisory Panel. https://www.ssflpanel.org/files/SSFLPanelReport.pdf.

Stadtmann, H., A. F. McWhan, T. W. M. Grimbergen, M. Figel, A. M. Romero, C. Gärtner, and C. Hranitzky. (2018). EURADOS Intercomparison 2014 for Whole Body Dosemeters in Photon Fields. Neuherberg, European Radiation Dosimetry Group. doi: 10.12768/fkb8-5798.

Stap, J., P. M. Krawczyk, C. H. Van Oven, G. W. Barendsen, J. Essers, R. Kanaar, and J. A. Aten. (2008). “Induction of linear tracks of DNA double-strand breaks by alpha-particle irradiation of cells.” Nature Methods 5(3): 261–266. doi: 10.1038/nmeth.f.206.

Stram, D. O., D. L. Preston, M. Sokolnikov, B. Napier, K. J. Kopecky, J. Boice, H. Beck, J. Till, and A. Bouville. (2015). Shared dosimetry error in epidemiological dose-response analyses. PLoS ONE 10(3): e0119418. doi: 10.1371/journal.pone.0119418. Erratum, PLoS ONE 10(5): e0126041 (2015).

Stram, D. O., M. Sokolnikov, B. A. Napier, V. V. Vostrotin, A. Efimov, and D. L. Preston. (2021). “Lung cancer in the Mayak workers cohort: Risk estimation and uncertainty analysis.” Radiation Research 195(4): 334–346. doi: 10.1667/RADE-20-00094.1.

Stricklin, D. L., J. VanHorne-Sealy, C. I. Rios, L. A. Scott Carnell, and L. P. Taliaferro. (2021). “Neutron radiobiology and dosimetry.” Radiation Research 195(5): 480–496. doi: 10.1667/RADE-20-00213.1.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. Mauck, III, Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. (2019). “Comprehensive integration of single-cell data. Cell 177(7): 1888–1902. doi: 10.1016/j.cell.2019.05.031.

Suckert, T., S. Nexhipi, A. Dietrich, R. Koch, L.A. Kunz-Schughart, E. Bahn, and E. Beyreuther. (2021). “Models for translational proton radiobiology—From bench to bedside and back.” Cancers (Basel) 13(16): 4216. doi: 10.3390/cancers13164216.

Sugiyama, H., M. Misumi, R. Sakata, A. V. Brenner, M. Utada, and K. Ozasa. (2021). “Mortality among individuals exposed to atomic bomb radiation in utero: 1950–2012.” European Journal of Epidemiology 36(4): 415–428. doi: 10.1007/s10654-020-00713-5.

Sugiyama, T., M. Iwaizumi, M. Kaneko, S. Tani, M. Yamade, Y. Hamaya, T. Furuta, H. Miyajima, S. Osawa, S. Baba, M. Maekawa, and K. Sugimoto. (2020). “DNA mismatch repair is not disrupted in stage 0 colorectal cancer resected using endoscopic submucosal dissection.” Oncology Letters 20(3): 2435–2441. doi: 10.3892/ol.2020.11799.

Sun, H., S. Cao, R. J. Mashl, C. K. Mo, S. Zaccaria, M. C. Wendl, S. R. Davies, M. H. Bailey, T. M. Primeau, J. Hoog, J. L. Mudd, D. A. Dean II, R. Patidar, L. Chen, M. A. Wyczalkowski, R. G. Jayasinghe, F. M. Rodrigues, N. V. Terekhanova, Y. Li, K. H. Lim, A. Wang-Gillam, B. A. Van Tine, C. X. Ma, R. Aft, K. C. Fuh, J. K. Schwarz, J. P. Zevallos, S. V. Puram, J. F. Dipersio, NCI PDXNet Consortium; B. Davis-Dusenbery, M. J. Ellis, M. T. Lewis, M. A. Davies, M. Herlyn, B. Fang, J. A. Roth, A. L. Welm, B. E. Welm, F. Meric-Bernstam, F. Chen, R. C. Fields, S. Li, R. Govindan, J. H. Doroshow, J. A. Moscow, Y. A. Evrard, J. H. Chuang, B. J. Raphael, and L. Ding. (2021). “Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidates for targeted treatment.” Nature Communications 12(1): 5086. doi: 10.1038/s41467-021-25177-3. Erratum, Nature Communications 13(1): 294 (2022).

Sunstein, C. R. (2002). Risk and Reason: Safety, Law, and the Environment. Cambridge, UK, Cambridge University Press.

Sunstein, C. R. (2017). “Cost-benefit analysis and arbitrariness review.” Harvard Environmental Law Review 41(1): 1–41.

Suzuki, Y., H. Yabe, S. Yasumura, T. Ohira, S.-I. Niwa, A. Ohtsuru, H. Mashiko, M. Maeda, and M. Abe. (2015). “Psychological distress and the perception of radiation risks: The Fukushima Health Management Survey.” Bulletin of the World Health Organization 93(9): 598–605. doi: 10.2471/BLT.14.146498.

Suzuki, Y., Y. Takebayashi, M. Murakami, S. Yasumura, M. Harigane, H. Yabe, T. Ohira, A. Ohtsuru, S. Nakajima, and M. Maeda. (2018). “Changes in risk perception of the health effects of radiation and mental health status: The Fukushima Health Management Survey.” International Journal of Environmental Research and Public Health 15(6): 1219. doi: 10.3390/ijerph15061219.

Svingen, T., D. L. Villeneuve, D. Knapen, E. M. Panagiotou, M. K. Draskau, P. Damdimopoulou, and J. M. O’Brien. (2021). “A pragmatic approach to adverse outcome pathway development and evaluation.” Toxicological Sciences 184(2): 183–190. doi: 10.1093/toxsci/kfab113.

Sykes, A. J., P. D. Larsen, R. F. Griffiths, and S. Aldington. (2012). “A study of airline pilot morbidity.” Aviation, Space, and Environmental Medicine 83(10): 1001–1006.

Tabachnik, S. (2019). “Recent soil samples suggest Rocky Flats still unsafe, environmental groups contend.” Denver Post, September 3. https://www.denverpost.com/2019/09/03/rocky-flats-lawsuit-safety.

Taliaferro, L. P., D. R. Cassatt, Z. P. Horta, and M. M. Satyamitra. (2021). “Meeting report: A poly-pharmacy approach to mitigate acute radiation syndrome.” Radiation Research 196(4): 436–446. doi: 10.1667/RADE-21-00048.1.

Tallarita, R. (2020). “The tragedy of costs and benefits.” Boston Review. https://bostonreview.net/articles/roberto-tallarita-tragedy-costs-and-benefits.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Tao, R., D. Zeng, and D. Y. Lin. (2020). “Optimal designs of two-phase studies.” Journal of the American Statistical Association 115(532): 1946–1959. doi: 10.1080/01621459.2019.1671200.

Tao, Z., S. Akiba, Y. Zha, Q. Sun, J. Zou, J. Li, Y. Liu, Y. Yuan, S. Tokonami, H. Morishoma, T. Koga, S. Nakamura, T. Sugahara, and L. Wei. (2012). “Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Physics 102(2): 173–181. doi: 10.1097/HP.0b013e31822c7f1e.

Tapio, S., M. P. Little, J. C. Kaiser, N. Impens, N. Hamada, A. G. Georgakilas, D. Simar, and S. Salomaa. (2021). “Ionizing radiation-induced circulatory and metabolic diseases.” Environment International 146: 106235. doi: 10.1016/j.envint.2020.106235.

Tawn, E. J., G. S. Rees, C. Leith, J. F. Winther, G. B. Curwen, M. Stovall, J. H. Olsen, C. Rechnitzer, H. Schroeder, P. Guldberg, and J. D. Boice, Jr. (2011). “Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation.” International Journal of Radiation Biology 87: 330–340. doi: 10.3109/09553002.2011.530338.

Teschendorff, A. E, and A. P. Feinberg. (2021). “Statistical mechanics meets single-cell biology.” Nature Reviews Genetics 22(7): 459–476. doi: 10.1038/s41576-021-00341-z.

Tharmalingam, S., S. Sreetharan, A. V. Kulesza, D. R. Boreham, and T. C. Tai. (2017). “Low-dose ionizing radiation exposure, oxidative stress and epigenetic programing of health and disease.” Radiation Research 188(4.2): 525–538. doi: 10.1667/RR14587.1.

Thierry-Chef, I., G. Ferro, L. Le Cornet, J. Dabin, T. S. Istad, A. Jahnen, C. Lee, C. Maccia, F. Malchair, H. M. Olerud, R. W. Harbron, J. Figuerola, J. Hermen, M. Moissonnier, M. O. Bernier, M. B. Bosch de Basea, G. Byrnes, E. Cardis, M. Hauptmann, N. Journy, A. Kesminiene, J. M. Meulepas, R. Pokora, and S. L. Simon. (2021). “Dose estimation for the European Epidemiological Study on Pediatric Computed Tomography (EPI-CT).” Radiation Research 196(1): 74–99. doi: 10.1667/RADE-20-00231.1.

Thome, C., D. B. Chambers, A. M. Hooker, J. W. Thompson, and D. R. Boreham. (2018). “Deterministic effects to the lens of the eye following ionizing radiation exposure: Is there evidence to support a reduction in threshold dose?” Health Physics 114(3): 328–343. doi: 10.1097/HP.0000000000000810.

Tognon, C. E., R. C. Sears, G. B. Mills, J. W. Gray, and J. W. Tyner. (2021). “Ex vivo analysis of primary tumor specimens for evaluation of cancer therapeutics.” Annual Review of Cancer Biology 5: 39–57. doi: 10.1146/annurev-cancerbio-043020-125955.

Tomasek, L. (2012). “Lung cancer mortality among Czech uranium miners—60 years since exposure.” Journal of Radiological Protection 32(3): 301–314. doi: 10.1088/0952-4746/32/3/301.

Tomasek, L. (2013). “Lung cancer risk from occupational and environmental radon and role of smoking in two Czech nested case-control studies.” International Journal of Environmental Research and Public Health 10(3): 963–979. doi: 10.3390/ijerph10030963.

Tomita, M., and M. Maeda. (2015). “Mechanisms and biological importance of photon-induced bystander responses: Do they have an impact on low-dose radiation responses.” Journal of Radiation Research 56(2): 205–219. doi: 10.1093/jrr/rru099.

Topol, E. J. (2019). “High-performance medicine: The convergence of human and artificial intelligence.” Nature Medicine 25(1): 44–56. doi: 10.1038/s41591-018-0300-7.

Tracy, B. S. (2020). An Overview of Rare Earth Elements and Related Issues for Congress. Washington, DC, Congressional Research Service. https://crsreports.congress.gov/product/pdf/R/R46618.

Tran, V., L. B. Zablotska, A. V. Brenner, and M. P. Little. (2017). “Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts.” Scientific Reports 7(1): 44147. doi: 10.1038/srep44147.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Trichopoulos, D., X. Zavitsanos, C. Koutis, P. Drogari, C. Proukakis, and E. Petridou. (1987). “The victims of Chernobyl in Greece: Induced abortions after the accident.” British Medical Journal 295(6606): 1100. doi: 10.1136/bmj.295.6606.1100.

Trott, K. R., and F. Kamprad. (1999). “Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiotherapy and Oncology 51(3): 197–203. doi: 10.1016/s0167-8140(99)00066-3.

Tsuruoka, C., M. Kaminishi, M. Shinagawa, Y. Shang, Y. Amasaki, Y. Shimada, and S. Kakinuma. (2021). “High relative biological effectiveness of 2 MeV fast neutrons for induction of medulloblastoma in Ptch1+/- mice with radiation-specific deletion on chromosome 13.” Radiation Research 196(2): 225–234. doi: 10.1667/RADE-20-00025.1.

Turner, M. C., D. Krewski, Y. Chen, C. A. Pope, III, S. Gapstur, and M. J. Thun. (2011). “Radon and lung cancer in the American Cancer Society cohort.” Cancer Epidemiology, Biomarkers and Prevention 20(3): 438–448. https://doi.org/10.1158/1055-9965.EPI-10-1153.

Tyldesley, S., G. Delaney, F. Foroudi, L. Barbera, M. Kerba, and W. Mackillop. (2011). “Estimating the need for radiotherapy for patients with prostate, breast, and lung cancers: Verification of model estimates of need with radiotherapy utilization data from British Columbia.” International Journal of Radiation Oncology, Biology and Physics 79(5): 1507–1515. doi: 10.1016/j.ijrobp.2009.12.070.

Ulsh, B. A., F. W. Whicker, T. G. Hinton, J. D. Congdon, and J. S. Bedford. (2001). “Chromosome translocations in T. scripta: The dose-rate effect and in vivo lymphocyte radiation response.” Radiation Research 155(1): 63–73. doi: 10.1667/0033-7587(2001)155[0063:ctitst]2.0.co;2.

UN (United Nations). (2021). 2021 Universal Declaration of Human Rights. https://www.un.org/en/about-us/universal-declaration-of-human-rights.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). (2000). UNSCEAR 2000 Report. Vol. II: Sources and Effects of Ionizing Radiation, Annex H: Combined effects of radiation and other agents. New York, United Nations.

UNSCEAR. (2006a). Effects of Ionizing Radiation, Annex A: Epidemiological studies of radiation and cancer. New York, United Nations. https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-A-CORR.pdf.

UNSCEAR. (2006b). Effects of Ionizing Radiation, Annex D: Effects of Ionizing Radiation on the Immune System. New York, United Nations. https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-D.pdf.

UNSCEAR. (2008). Sources and Effects of Ionizing Radiation, Annex B: Exposures of the public and workers from various sources of radiation. https://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR2.pdf.

UNSCEAR. (2016). Sources, Effects, and Risks of Ionizing Radiation, Annex B: Radiation exposures from electricity generation. https://www.unscear.org/docs/publications/2016/UNSCEAR_2016_Annex-B-CORR2.pdf.

UNSCEAR. (2020a). Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. Sixty-seventh session (2-6 November 2020). Report A/76/46 Part 1, pp. 1–22. New York, United Nations. https://www.unscear.org/docs/GAreports/2020/UNSCEAR_Report_General_Assembly_A_76_46_Part1.pdf.

UNSCEAR. (2020b). Sources, Effects and Risks of Ionizing Radiation: UNSCEAR 2020 Report, Scientific Annex B: Levels and effects of radiation exposure due to the accident at the Fukushima Daiichi Nuclear Power Station: Implications of information published since the UNSCEAR 2013 Report. https://www.unscear.org/docs/publications/2020/UNSCEAR_2020_AnnexB_AdvanceCopy.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

UNSCEAR. (2021). Sources, Effects and Risks of Ionizing Radiation: UNSCEAR 2020/2021, Report to the General Assembly, with Scientific Annexes, Volume III, Scientific Annex C: Biological mechanisms relevant for the inference of cancer risks from low-dose and low-dose-rate radiation. New York, United Nations. https://www.unscear.org/docs/publications/2020/UNSCEAR_2020_21_Annex-C.pdf.

Unternaehrer-Hamm, J., E. Chirshev, N. Hojo; A. Bertucci, L. Sanderman, N. Nguyen, H. Wang, T. Suzuki, E. Brito, S. Martinez, C. Castañón, S. Mirshahidi, M. E. Vazquez, K. Oberg, and Y. Ioffe. (2020). “Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with let-7 levels and predicts tumor growth and metastasis.” Molecular Oncology 14(11): 2796–2813. doi: 10.1002/1878-0261.12762.

U.S. Congress, House. (2021). Examining the Need to Expand Eligibility Under the Radiation Exposure Compensation Act. Hearing Before the Committee on the Judiciary Subcommittee on the Constitution, Civil Rights, and Civil Liberties (statement of Scott D. Szymendera, Analyst in Disability Policy, March 24). Washington, DC, Congressional Research Service.

U.S. Congress, Senate. (1998). Radioactive Fallout from Nuclear Testing at Nevada Test Site, 1950-60. Hearing before a Subcommittee of the Committee on Appropriations, 105th Congress, 1st Session. Washington, DC, U.S. Government Printing Office. https://www.govinfo.gov/content/pkg/CHRG-105shrg44045/html/CHRG-105shrg44045.htm.

U.S. NRC (United States Nuclear Regulatory Commission). (1986). “Safety goals for the operation of nuclear power plants (51 FR 28044; August 4, 1986 as corrected and republished at 51 FR 30028; August 21, 1986).” Federal Register 51: 30028.

U.S. NRC. (1995). Reassessment of NRC’s Dollar per Person-rem Conversion Factor Policy. Washington, DC, Office of Nuclear Regulatory Research, Division of Regulatory Applications, U.S. Nuclear Regulatory Commission.

U.S. NRC. (2012). Technical Evaluation Report: For the U.S. Department of Energy West Valley Draft Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank Final Report. Washington, DC, Office of Federal and State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML1227/ML12270A279.pdf.

U.S. NRC. (2015a). 10 CFR Part 20 [Docket Nos. PRM-20-28, PRM-20-29, and PRM-20-30; NRC-2015-0057], Linear No-Threshold Model and Standards for Protection Against Radiation. Rockville, MD, U.S. Nuclear Regulatory Commission.

U.S. NRC. (2015b). Examining the Reasons for Ending the Cancer Risk Study. https://public-blog.nrc-gateway.gov/2015/10/06/examining-the-reasons-for-ending-the-cancer-risk-study.

U.S. NRC. (2017). Regulatory Analysis Guidelines of the U.S. Nuclear Regulatory Commission, Draft Report for Comment. Washington, DC, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.

U.S. NRC. (2020a). NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 4: Licensing and Siting Dose Assessment Codes [DRAFT]. Washington, DC, U.S. Nuclear Regulatory Commission.

U.S. NRC. (2020b). Valuing Nonfatal Cancer Risks in Cost-Benefit Analysis. https://www.nrc.gov/docs/ML2005/ML20058C222.pdf.

U.S. NRC. (2021). “Linear no-threshold model and standards for protection against radiation: A proposed rule by the Nuclear Regulatory Commission on 08/17/2021.” Federal Register 86: 45923–45936.

U.S. NRC. (2022). Reassessment of NRC’s Dollar per Person-rem Conversion Factor Policy, Revision 1. Washington, DC, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML2205/ML22053A025.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Utada, M., A. V. Brenner, D. L. Preston, J. B. Cologne, R. Sakata, H. Sugiyama, A. Sadakane, E. J. Grant, E. K. Cahoon, K. Ozasa, and K. Mabuchi. (2018). “Radiation risks of uterine cancer in atomic bomb survivors: 1958–2009.” JNCI Cancer Spectrum 2(4): pky081. doi: 10.1093/jncics/pky081.

Utada, M., A. V. Brenner, D. L. Preston, J. B. Cologne, R. Sakata, H. Sugiyama, N. Kato, E. J. Grant, E. J. Cahoon, K. Mabuchi, and K. Ozasa. (2020). “Radiation risk of ovarian cancer in atomic bomb survivors: 1958–2009.” Radiation Research 195(1): 60–65.

Van Dilla, M. A., T. T. Trujillo, P. F. Mullaney, and J. R. Coulter. (1969). “Cell microfluorometry: A method for rapid fluorescence measurement.” Science 163(3872): 1213–1214. doi: 10.1126/science.163.3872.1213.

Van Voorhies, W. A., H. A. Castillo, C. N. Thawng, and G. B. Smith. (2020). “The phenotypic and transcriptomic response of the Caenorhabditis elegans nematode to background and below-background radiation levels.” Frontiers in Public Health 8: 581796. doi: 10.3389/fpubh.2020.581796.

Vandiver, A. R., R. A. Irizarry, K. D. Hansen, L. A. Garza, A. Runarsson, X. Li, A. L. Chien, T. S. Wang, S. G. Leung, S. Kang, and A. P. Feinberg. (2015). “Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin.” Genome Biology 16(1): 1–15. doi: 10.1186/s13059-015-0644-y.

Velazquez-Kronen, R., E. S. Gilbert, M. S. Linet, K. B. Moysich, J. L. Freudenheim, J. Wactawski-Wende, S. L. Simon, E. K. Cahoon, B. H. Alexander, M. M. Doody, and C. M. Kitahara. (2020). “Lung cancer mortality associated with protracted low-dose occupational radiation exposures and smoking behaviors in U.S. radiologic technologists, 1983–2012.” International Journal of Cancer 147(11): 3130–3138. doi: 10.1002/ijc.33141.

Viscusi, W. K. (2018). Pricing Lives: Guideposts for a Safer Society. Princeton, NJ, Princeton University Press.

Wakeford, R. (2019). “Does low-level exposure to ionizing radiation increase the risk of cardiovascular disease?” Hypertension 73: 1170–1171. doi: 10.1161/HYPERTENSIONAHA.119.11892.

Wakeford, R., and J. F. Bithell. (2021). “A review of the types of childhood cancer associated with a medical X-ray examination of the pregnant mother.” International Journal of Radiation Biology 97(5): 571–592. doi: 10.1080/09553002.2021.1906463.

Wakeford, R., and M. P. Little. (2003). “Risk coefficients for childhood cancer after intrauterine irradiation: A review.” International Journal of Radiation Biology 79(5): 293–309. doi: 10.1080/0955300031000114729.

Wasserstein, D. L., and N. A. Lazar. (2016). “The ASA statement on p-values: Context, process, and purpose.” American Statistician 70(2): 129–133. doi: 10.1080/00031305.2016.1154108.

Weinstein, N. D., K. Kolb, and B. D. Goldstein. (1996). “Using time intervals between expected events to communicate risk magnitudes.” Risk Analysis 16(3): 305–308. doi: 10.1111/j.1539-6924.1996.tb01464.x.

Whipple, C. (1987). De Minimis Risk. Boston, MA, Springer-Verlag.

White-Koning, M. L., D. Hémon, D. Laurier, M. Tirmarche, E. Jougla, A. Goubin, and J. Clavel. (2004). “Incidence of childhood leukaemia in the vicinity of nuclear sites in France, 1990–1998.” British Journal of Cancer 91(5): 916–922. doi: 10.1038/sj.bjc.6602068.

Wieselquist, W. A., R. A. Lefebvre, and M. A. Jessee (eds.). (2020). SCALE Code System, ORNL/TM-2005/39, Version 6.2.4. Oak Ridge, TN, Oak Ridge National Laboratory.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. Da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. GonzalezBeltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. Van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. Van Der Lei, E. Van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons. (2016). “The FAIR guiding principles for scientific data management and stewardship.” Scientific Data 3: 160018. doi: 10.1038/sdata.2016.18.

Wilson, P. F., H. Nagasawa, C. L. Warner, M. M. Fitzek, J. B. Little, and J. S. Bedford. (2008). “Radiation sensitivity of primary fibroblasts from hereditary retinoblastoma family members and some apparently normal controls: Colony formation ability during continuous low-dose-rate gamma irradiation.” Radiation Research 169(5): 483–494. doi: 10.1667/RR1333.1.

Wilson, R. H., K. Vishwanath, and M. A. Mycek. (2016). “Optical methods for quantitative and label-free sensing in living human tissues: Principles, techniques, and applications.” Advances in Physics 1(4): 523–543. doi: 10.1080/23746149.2016.1221739.

WNN. (2021). “Fukushima water release will have minimal impact, Tepco says.” World Nuclear News, November 17.

Wojcik, A., S. Bouffler, M. Hauptmann, and P. Rajaraman. (2018). “Considerations on the use of the terms radiosensitivity and radiosusceptibility.” Journal of Radiological Protection 38(3): N25–N29.

Wu, Y., F. O. Hoffman, A. I. Apostoaei, D. Kwon, B. A. Thomas, R. Glass, and L. B. Zablotska. (2019). “Methods to account for uncertainties in exposure assessment in studies of environmental exposures.” Environmental Health 18(1): 31. doi: 10.1186/s12940-019-0468-4.

Xu, Y., G. Randers-Pehrson, H. C. Turner, S. A. Marino, C. R. Geard, D. J. Brenner, and G. Garty. (2015). “Accelerator-based biological irradiation facility simulating neutron exposure from an improvised nuclear device. Radiation Research 184(4): 404–410. doi: 10.1667/RR14036.1.

Yamada, M., K. Furukawa, Y. Tatsukawa, K. Marumo, S. Funamoto, R. Sakata, K. Ozasa, H. M. Cullings, D. L. Preston, and P. Kurttio. (2021). “Congenital malformations and perinatal deaths among the children of atomic bomb survivors: A reappraisal.” American Journal of Epidemiology 190(11): 2323–2333. doi: 10.1093/aje/kwab099.

Yeager, M., M. J. Machiela, P. Kothiyal, M. Dean, C. Bodelon, S. Suman, M. Wang, L. Mirabello, C. W. Nelson, W. Zhou, C. Palmer, B. Ballew, L. M. Colli, N. D. Freedman, C. Dagnall, A. Hutchinson, V. Vij, Y. Maruvka, M. Hatch, I. Illienko, Y. Belayev, N. Nakamura, V. Chumak, E. Bakhanova, D. Belyi, V. Kryuchkov, I. Golovanov, N. Gudzenko, E. K. Cahoon, P. Albert, V. Drozdovitch, M. P. Little, K. Mabuchi, C. Stewart, G. Getz, D. Bazyka, A. Berrington de Gonzalez, and S. J. Chanock. (2021). “Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident.” Science 372(6543): 725–729. doi: 10.1126/science.abg2365.

Yeom, Y. S., H. Han, C. Choi, T. T. Nguyen, B. Shin, C. Lee, and C. H. Kim. (2019). “Posture-dependent dose coefficients of mesh-type ICRP reference computational phantoms for photon external exposures.” Physics in Medicine and Biology 64(7): 075018. doi: 10.1088/1361-6560/ab0917.

Yeom, Y. S., K. Griffin, H. Han, C. Choi, B. Shin, T. T. Nguyen, C. H. Kim, and C. Lee. (2021). “Dose conversion coefficients for neutron external exposures with five postures: Walking, sitting, bending, kneeling, and squatting.” Radiation and Environmental Biophysics 60(2): 317–328. doi: 10.1007/s00411-021-00900-2.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

Yong, L. C., L. E. Pinkerton, J. H. Yiin, J. L. Anderson, and J. A. Deddens. (2014). “Mortality among a cohort of U.S. commercial airline cockpit crew.” American Journal of Industrial Medicine 57(8): 906–914. doi: 10.1002/ajim.22318.

Yoshida, K., B. French, N. Yoshida, A. Hida, W. Ohishi, and Y. Kusunoki. (2019). “Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: The Adult Health Study of atomic-bomb survivors.” British Journal of Haematology 185(1): 107–115. doi: 10.1111/bjh.15750.

Young, A. L. (2020). “Radiation research and policy coordination: A successful model.” Urban Studies and Public Administration 3(3): 183–193. doi: 10.22158/uspa.v3n3p183.

Zablotska, L. B., R. S. D. Lane, and P. A. Thompson. (2014a). “A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data.” British Journal of Cancer 110(1): 214–223. doi: 10.1038/bjc.2013.592.

Zablotska, L. B., M. P. Little, and R. J. Cornett (2014b). Potential increased risk of ischemic heart disease mortality with significant dose fractionation in the Canadian Fluoroscopy Cohort Study. American Journal of Epidemiology 179(1): 120–131. doi: 10.1093/aje/kwt244.

Zander, A., T. Paunesku, and G. Woloschak. (2019). “Radiation databases and archives—examples and comparisons.” International Journal of Radiation Biology 95(10): 1378–1389. doi: 10.1080/09553002.2019.1572249.

Zeeb, H., G. P. Hammer, I. Langner, T. Schafft, S. Bennack, and M. Blettner. (2010). “Cancer mortality among German aircrew: Second follow-up.” Radiation and Environmental Biophysics 49(2): 187–194. doi: 10.1007/s00411-009-0248-6.

Zeeb, H., G. P. Hammer, and M. Blettner. (2012). “Epidemiological investigations of aircrew: An occupational group with low-level cosmic radiation exposure.” Journal of Radiological Protection 32(1): N15–N19. doi: 10.1088/0952-4746/32/1/N15.

Zhang, W., R. G. E. Haylock, M. Gillies, and N. Hunter. (2019). “Mortality from heart diseases following occupational radiation exposure: Analysis of the National Registry for Radiation Workers (NRRW) in the United Kingdom.” Journal of Radiological Protection 39(2): 327–353. doi: 10.1088/1361-6498/ab02b2.

Zhang, Y. S., G. T. Santiago, M. M. Alvarez, S. J. Schiff, E. S. Boyden, and A. Khademhosseini. (2017). “Expansion mini-microscopy: An enabling alternative in point-of-care diagnostics.” Current Opinion in Biomedical Engineering 1: 45–53. doi: 10.1016/j. cobme.2017.03.001.

Zhao, T., Z. D. Chiang, J. W. Morriss, L. M. LaFave, E. M. Murray, I. Del Priore, K. Meli, C. A. Lareau, N. M. Nadaf, J. Li, A. S. Earl, E. Z. Macosko, T. Jacks, J. D. Buenrostro, and F. Chen. (2022). “Spatial genomics enables multi-modal study of clonal heterogeneity in tissues.” Nature 601(7891): 85–91. doi: 10.1038/s41586-021-04217-4.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 221
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 222
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 223
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 224
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 225
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 226
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 227
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 228
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 229
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 230
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 231
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 232
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 233
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 234
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 235
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 236
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 237
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 238
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 239
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 240
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 241
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 242
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 243
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 244
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 245
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 246
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 247
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 248
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 249
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 250
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 251
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 252
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 253
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 254
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 255
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 256
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 257
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 258
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 259
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 260
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 261
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 262
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 263
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 264
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 265
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/26434.
×
Page 266
Next: Appendix A: Consolidated Appropriations Act, 2021 »
Leveraging Advances in Modern Science to Revitalize Low-Dose Radiation Research in the United States Get This Book
×
Buy Paperback | $40.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Radiation exposure at low doses (below 100 milligray) or low-dose rates (less than 5 milligray per hour) occurs in a wide range of medical, industrial, military, and commercial settings. The effects of exposure at these levels are not fully understood, but there are long-standing concerns that such exposure could negatively affect human health. Although cancer has been linked to low-dose radiation exposure for decades, there is increasing evidence that low-dose radiation exposure may also be associated with cardiovascular disease, neurological disorders, immune dysfunction, and cataracts.

Recent advances in research, new tools, and a coordinated multidisciplinary research program could help fill knowledge gaps about the health impacts of low-dose radiation exposures. This report calls for the development of a U.S. research program to study how low doses of radiation affect cancer, cardiovascular disease, neurological disorders, and other disease risks. Research should also better define the impacts of radiation doses, dose rates, types of radiation, and exposure duration. The report estimates $100 million annually for the next 15 years would be required to conduct epidemiological and biological research, and to establish an infrastructure for research.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!