National Academies Press: OpenBook
« Previous: Persian Gulf
Suggested Citation:"Red Sea." National Research Council. 1995. Clean Ships, Clean Ports, Clean Oceans: Controlling Garbage and Plastic Wastes at Sea. Washington, DC: The National Academies Press. doi: 10.17226/4769.
×
Page 329
Suggested Citation:"Red Sea." National Research Council. 1995. Clean Ships, Clean Ports, Clean Oceans: Controlling Garbage and Plastic Wastes at Sea. Washington, DC: The National Academies Press. doi: 10.17226/4769.
×
Page 330

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

APPENDIX E 329 flow into the Arabian Sea (Pickard and Emery, 1990). Because the Persian Gulf is so shallow, it experiences uniformly high levels of salinity (40-70 psu) and wide seasonal changes in sea temperatures (15-38°c). Thorough wind-driven mixing occurs throughout most of the year (International Maritime Organization, 1994). The Persian Gulf experiences high evaporation and low rainfall rates—a contributing factor to the high salinity of the water. These factors work to restrict biological diversity, and many species live at or near their limits of environmental tolerance (International Maritime Organization, 1994). Under these conditions, any added stress, such as an oil spill or other pollution event, can disproportionately influence the area. Red Sea The Red Sea is a rift valley, resulting from the separation Of Africa and the Arabian peninsula (Pickard and Emery, 1990). With the exception of the Suez Canal, it is closed to the north. It opens to the Gulf of Aden, Arabian Sea, and the Indian Ocean to the south, through the narrow strait of the Bah al Mandab. There is a sill of about 110 m at the Bah al Mandab (Pickard and Emery, 1990). There are no rivers flowing into the Sea. Evaporation is high (about 200 cm per year), while precipitation averages about 7 cm per year, making this the most saline large body of ocean water in the world (Pickard and Emery, 1990). The surface layer is saturated with dissolved oxygen; however, absolute values are low (less than 4 milliliters per liter) due to high temperatures and salinities. Red Sea circulation varies seasonally with the winds. In summer (southwest monsoon) the winds are to the south. Surface flow is southward, with outflow through the Bah al Mandab; additionally, there is a subsurface inflow to the north through that strait. In winter (northeast monsoon) the winds over the southern half of the sea change to the north, and there is a northward surface flow over the entire Red Sea, with a subsurface southward flow through the Bah al Mandab. The outflow is from an intermediate layer to about 100 m. This water can be traced through the Arabian Sea and down the west side of the Indian Ocean (Pickard and Emery, 1990). Residence time for the surface layer has been estimated at six years; for the deep water, about 200 years (Pickard and Emery, 1990). A notable feature of the Red Sea are the hot brine pools found in some of the deepest parts. Pickard and Emery offer the explanation with fewest arguments. They assert that ''this is interstitial water from sediments, or solutions in water of crystallization from solid materials in the sea bottom, released from heating from below and forced out through cracks into the deep basins of the Red Sea.''

TABLE E-1 General Physical Characteristics of MARPOL Special Areas depth (m) mean area volume surface temp. surface salinity relative surface residence time (106km2) (103km3 range (°C) range (psu) water viscositya (years) (%) APPENDIX E Antarctic Ocean 4,000 -2/+4 34.6 94-110 100 Baltic Sea 86 0.39 33 -2/+15 6-8 65-107 short Black Sea 1,166 0.46 537 9-5** 18-21** 53-79 2500*-3000§ Caribbean Sea 2,491 2.8 6,860 25-28 36 51-55 Gulf of Mexico 1,512 1.5 2,332 20-29 36 50-61 100* Mediterranean Sea 1,494 2.5 3,758 13-26 37-39 54-73 70-100 North Sea 91 0.60 55 5-16 34-35 67-92 0.9|| Persian Gulf 25* 0.24 10 10-25 38 55-78 long Red Sea 558 0.45 251 18-32 40-41 47-65 6.0§ aAssumes 100% at 0 psu and 0°C. Sources: van der Leeden et al., 1990; *Geyer, 1981; *Sverdrup et al., 1942; **Pinet, 1992; §Pickard and Emery, 1990; || Otto, 1983 330

Next: REFERENCES »
Clean Ships, Clean Ports, Clean Oceans: Controlling Garbage and Plastic Wastes at Sea Get This Book
×
 Clean Ships, Clean Ports, Clean Oceans: Controlling Garbage and Plastic Wastes at Sea
Buy Hardback | $52.95 Buy Ebook | $42.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Marine debris is a serious environmental problem. To do its part, the United States has agreed to abide by the international treaty for garbage control at sea, known as MARPOL 73/78 Annex V.

Clean Ships, Clean Ports, Clean Oceans explores the challenge of translating Annex V into workable laws and regulations for all kinds of ships and boats, from cruise ships to fishing crafts and recreational boats. The volume examines how existing resources can be leveraged into a comprehensive strategy for compliance, including integrated waste management systems and effective enforcement.

Clean Ships, Clean Ports, Clean Oceans describes both progress toward and obstacles to Annex V compliance. The book covers:

  • How shipborne garbage orignates and what happens to garbage discharged into the seas.
  • Effects of discharge on human health, wildlife safety, and aesthetics.
  • Differences in perspective among military, industrial, and recreational seafarers and shoreside facilities.

Clean Ships, Clean Ports, Clean Oceans will be important to marine policymakers, port administrators, ship operations officers, maritime engineers, and marine ecologists.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!